TY - CONF A1 - Vogl, Jochen T1 - Isotope analysis N2 - The variation of isotope ratios is increasingly used to unravell natural and technical questions. In the past the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance and authenticity of food, the number of published isotope data strongly increased. Instrumental developments such as the enhancement of inductively coupled plasma mass spectrometers (ICPMS) from an instrument for simple quantitative analysis to highly sophisticated isotope ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reliable isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICPMS. Especially for such user isotope reference materials (IRM) are indispensible to enable a reliable method validation. The fast development and the broad availability of ICPMS also lead to an expansion of the classical research areas and new elements are under Investigation. This presentation shows the basics and principles for isotope ratio determination using ICP-MS. Additionally, it provides three specific examples for isotope Ratio applications: isotope dilution mass spectrometry; provenancing of archaeoligical artifeacts by lead isotope Ratio Analysis and studies on boron uptake in bell pepper plants. T2 - ICP-MS Kurs (BAM Akademie) CY - Berlin, Germany DA - 19.04.2017 KW - Lead isotopes KW - Delta values KW - Boron isotopes KW - Archaeology KW - Plant metabolism PY - 2017 AN - OPUS4-40030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Tütken, T. T1 - How to measure the three-isotope composition of metal(oid) elements by MC-ICP-MS N2 - In chemical elements with three or more stable isotopes, mass-dependent stable isotope fractionation yields correlated isotope ratios, m2/m1 and m3/m1. In three-isotope space, i.e. in a δ’m2/δ’m1 vs. δ’m3/δ’m1 plot, data align along a slope θ, the so called ‘triple isotope fractionation exponent’ that scales the two isotope ratios. Theoretical calculations predict small differences in θ for kinetic- and equilibrium isotope fractionation (Young et al. 2002) and thus the precise measurement of θ allows constraining the reaction mechanism. However, due to an apparent lack of precision of stable isotope analysis by MC-ICP-MS, θ is merely used as analytical quality control, i.e. for demonstration that samples and standards plot within their analytical precision in the range of theoretical θ-values originating in δ-zero. We show how θ can be determined precisely enough by MC-ICP-MS to distinguish kinetic- and equilibrium isotope fractionation, even when isotopic differences between samples are low. For low magnitudes of isotope fractionation, we exploit new, isotopically fractionated isotope standard materials (Vogl et al. 2016). We determine quality norms regarding interferences and measurement conditions to warrant trueness and to maximize precision. We exemplary explore the measurement of the three-isotope composition of Mg stable isotopes, budget the uncertainty of θ-values, and report the first θ-values of carbonate-water pairs and bioapatite. Our measurement approach adds a new dimension to isotope data beyond the δ-scale that has a high potential to reveal different modes of (bio)mineral precipitation in the sedimentary and biological record and thus to contribute solving conundrums in the Earth and Life Sciences. T2 - 13. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse CY - Berlin, Germany DA - 03.09.2018 KW - Isotope fractionation KW - Delta values KW - Magnesium PY - 2018 AN - OPUS4-45898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geilert, S. A1 - Varekamp, J. C. A1 - Vogl, Jochen A1 - Frank, M. A1 - Cauley, C. A1 - Van Bergen, M. T1 - Si isotope fractionation during BIF formation – inferences from a modern Archean ocean analogue N2 - Silica-rich sedimentary rocks like cherts and BIFS, typical for the Archean, have been used to reconstruct temperatures and other properties of the early oceans through the study of their Si isotope variations. Precambrian cherts and BIFS span a δ30Si range of ~7‰, with BIFs being about 2‰ lower in δ30Si than cherts. These lower δ30Si signatures have been attributed to represent contributions from different input sources such as hydrothermal fluids, variable continental weathering regimes or sorption onto Fe oxides/hydroxides [e.g. 2 and references therein]. In this study, fluids and BIF-like sediments have been investigated for their Si isotope compositions in Paulina Lake (PL), a hydrothermally-influenced crater lake in the Newberry Caldera, Oregon, USA. PL lake sediments are rich in silica (~65wt% SiO2) and are composed of up to 22.5wt% Fe2O3, which is comparable to Archean BIFs and thus serve as a modern Archean ocean analogue. We compared our analyses with East Lake (EL), the twin Newberry crater lake without hydrothermal input. Dissolved Si in EL has an average δ30Si signature of +1.55±0.16‰ (1sd) and sediments an average δ30Si signature of +0.18±0.28‰ (1sd). Dissolved Si in PL has an average δ30Si signature of +2.02±0.15‰ (1sd), whereas the sediments show a large range in δ30Si values between +0.59‰ and -1.24‰. PL sediments show a trend towards more negative δ30Si with increasing Fe2O3 contents. The magnitude of Si isotope fractionation thus appears to depend on the presence of Fe. This fractionation induced by interaction with Fe precipitation is defined here as the offset in δ30Si between PL and EL sediments at comparable depths (Δ30SiPL-EL). The resulting Δ30SiPL-EL values range between +0.69 and -1.42‰ and increase with increasing Fe2O3 content in the sediments. Our results are the first to quantify the magnitude of Fe-induced δ30Si fractionation observed in a natural analogue of the Archean ocean and can explain the lighter δ30Si signatures found in BIFs. T2 - Fourth General Meeting of the SPP 1833 “Building a Habitable Earth” CY - Cologne, Germany DA - 27.03.2019 KW - Archean ocean KW - Si isotope fractionation KW - Delta values PY - 2019 AN - OPUS4-47711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -