TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma fundamentals and diagnostics N2 - Short 4-hour course on plasma physics and plasma diagnostics T2 - January 8-13, Winter Plasma Conference CY - Tucson, USA DA - 08.01.2016 KW - PLasma physics KW - Plasma diagnostics PY - 2016 AN - OPUS4-38772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Modeling chemical reactions in laser induced plasmas N2 - Under the assumption of local thermal equilibrium, a numerical algorithm is proposed to find the equation of state for laser-induced plasmas (LIPs) in which chemical reactions are permitted in addition to ionization processes. The Coulomb interaction in plasma is accounted for by the Debye–Hückel method. The algorithm is used to calculate the equation of state for LIPs containing carbon, silicon, calcium, chlorine, nitrogen, and argon. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules N2, C2, Si2, CN, Cl2, SiN, SiC, CaCl, CaCl2 and their positive and (if existed) negative ions. The algorithm is incorporated into a fluid dynamic numerical model based on the Navier–Stokes equations describing an expansion of LIP plumes into an ambient gas. The dynamics of LIP plumes obtained by the ablation of SiC, CaCl2, solid silicon, or solid carbon in an ambient gas containing N2 and Ar is simulated to study formation of molecules and molecular ions. A particular attention is paid to formation of anions Cl−, Cl2−, Si2−, C2−, CN−, and SiN− in LIPs. T2 - Winter Plasma Conference, January 8-13 2016 CY - Tucson, USA DA - 08.01.2016 KW - Plasma KW - Plasma modeling PY - 2016 AN - OPUS4-38774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Glaus, Reto A1 - Panne, Ulrich T1 - Modeling and diagnostics of molecules in laser induced plasmasmodeling and diagnostics of molecules in laser induced plasmas N2 - A collisional-dominated model of a laser induced plasma will be presented which includes the coupled Navier-Stokes, state, radiative transfer, and material transport equations and incorporates plasma chemistry through the equilibrium approach based on the use of atomic and molecular partition functions. Simple chemical systems are modeled including ablation of Si, C, SiC, CaCl2 in N2 or Ar atmospheres with the formation of molecules N2, C2, Si2, CN, Cl2, SiN, SiC, CaCl, CaCl2 and their corresponding positive and negative ions. The model is used to study evolution of number densities of atomic and molecular species in the expanding plasma plume. The distribution is compared to experimental observations obtained by optical imaging and tomography. The model and experiment serve to elucidate mechanisms of molecular formation in LIPs, the topic which has recently received much attention in the LIBS community. T2 - SCIX 2016 CY - Minneapolis, USA DA - 18.09.2016 KW - Plasma diagnostics KW - Plasma physics PY - 2016 AN - OPUS4-38777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Glaus, Reto A1 - Demidov, Alexander A1 - Kazakov, Alexander Ya. A1 - Panne, Ulrich T1 - Modeling and diagnostics of laser induced plasma for needs of spectrochemical analysis N2 - Two topics will be addressed: (1) calibration-free LIBS based on Monte Carlo spectral optimization and (2) insight into the possibility of simultaneous elemental and molecular analysis by LIBS. Both topics heavily rely on modeling of laser induced plasma and are closely connected to experiment. In Monte Carlo LIBS (MC LIBS), concentrations are found by fitting model-generated synthetic spectra to experimental spectra. The model of a static uniform isothermal plasma in local thermodynamic equilibrium is employed. Many configurations of plasma parameters and their corresponding spectra are simultaneously generated using a graphic processing unit (GPU). Using the GPU allows for the reduction of computational time down to several minutes for one experimental spectrum that presents the significant progress in comparison with earlier versions of MC LIBS. The method is tested by analyzing industrial oxides containing various concentrations of CaO, Fe2O3, MgO, and TiO2. The agreement within several percent between found and certified concentrations is achieved. Next, a newly developed collisional-dominated model of a laser induced plasma is introduced. The model includes the coupled Navier-Stokes, state, radiative transfer, and material transport equations and incorporates plasma chemistry through the equilibrium approach based on the use of atomic and molecular partition functions. Simple chemical systems are modeled including ablation of Si and C in N2 and Ar atmospheres.The model is used to study evolution of number densities of atomic and molecular species in the expanding plasma plume. The distribution is compared to experimental observations obtained by optical imaging and tomography. To further verify the model, dynamic plasma T2 - FLAMN 2016 CY - St. Petersburg, Russia DA - 27.06.2016 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2016 AN - OPUS4-38775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Demidov, Alexander A1 - Glaus, Reto A1 - Panne, Ulrich T1 - Diagnostics and modeling of laser induced plasma in relation to current needs of spectrochemical analysis N2 - The short report on computer modeling and diagnostics of laser induced plasmas T2 - Winter Plasma Conference CY - Tucson, USA DA - 08.01.2016 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2016 AN - OPUS4-38773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Glaus, Reto A1 - Panne, Ulrich T1 - Modeling and diagnostics of molecules in laser induced plasmasmodeling and diagnostics of molecules in laser induced plasmas N2 - A collisional-dominated model of a laser induced plasma will be presented which includes the coupled Navier-Stokes, state, radiative transfer, and material transport equations and incorporates plasma chemistry through the equilibrium approach based on the use of atomic and molecular partition functions. Simple chemical systems are modeled including ablation of Si, C, SiC, CaCl2 in N2 or Ar atmospheres with the formation of molecules N2, C2, Si2, CN, Cl2, SiN, SiC, CaCl, CaCl2 and their corresponding positive and negative ions1,2. The initial conditions are specially chosen to emulate the plasma state on the onset of expansion just after the laser pulse had ended. The model is used to study evolution of number densities of atomic and molecular species in the expanding plasma plume. The distribution is compared to experimental observations obtained by optical imaging and tomography. The model and experiment serve to elucidate mechanisms of molecular formation in LIPs, the topic which has recently received much attention in the LIBS community. T2 - LIBS 2016 CY - Chamonix, France DA - 12.09.2016 KW - Plasma diagnostics KW - Plasma physics PY - 2016 AN - OPUS4-38776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Hydrodynamic model of laser induced plasma including equilibrium chemistry N2 - Hydrodynamic model of laser induced plasma including plasma chemistry T2 - 6.07.2017, ITMO University, St. Petersburg, Russia CY - ITMO University, St. Petersburg, Russia DA - 5.07.2017 KW - Plasma KW - LIBS KW - Plasma modeling PY - 2017 AN - OPUS4-42294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Predicting molecules in laser induced plasma based on equilibrium plasma model N2 - New development in modeling reactive flows in laser induced plasma T2 - 09.10.2017, SciX, Reno, NV, USA CY - Reno, NV, USA DA - 08.10.2017 KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2017 AN - OPUS4-42295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kazakov, Alexander Ya. A1 - Panne, Ulrich T1 - Calibration-free Monte Carlo method for laser induced breakdown spectroscopy N2 - Calibration-free LIBS by Monte Carlo simulation of plasma spectra T2 - April 26 2017, Johannes Kepler University, Linz, Austria CY - Johannes Kepler University, Linz, Austria DA - 26.04.2017 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2017 AN - OPUS4-42288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kazakov, Alexander Ya. A1 - Glaus, Reto A1 - Nagli, L. A1 - Panne, Ulrich T1 - Model of stimulated emission in aluminium laser-induced plasma produced by resonance pumping N2 - Model of lasing effect in resonantly pumped aluminum laser induced plasma T2 - EMS LIBS CY - Pisa, Italy DA - 11.06.2017 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2017 AN - OPUS4-42292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -