TY - CONF A1 - Algernon, D. A1 - Arndt, R.W. A1 - Denzel, W. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C.U. A1 - Kathage, S. A1 - Keßler, S. A1 - Köpp, Christian A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Timofeev, Juri A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - Test specimen concepts in regard to quality assurance and validation of nondestructive testing in civil engineering N2 - The process of ensuring reliability of NDT applications contains various aspects, such as determining the performance and probability of success, the uncertainty in measurement, the provision of clear and functional procedures and ensuring the correct application accordingly. Test specimens have become powerful elements in supporting many of these aspects. Within the committee for NDT in Civil Engineering (NDT-CE) of the German Society for Nondestructive Testing (DGZfP), the subcommittee on Quality Assurance (UA-QS) therefore addresses the design and the integration of test specimens in the quality assurance process. Depending on the specific purpose, the requirements on test specimens can vary significantly based on the defined simulated scenario. The most prominent purposes of test specimens might be seen in providing references for inspection systems in regard to function control, calibration and validation. Further aspects can be parametric studies, basic investigation of physical principles related to NDT or a simplified and therefore comprehensive demonstration of inspection concepts (e.g. for teaching purposes). The specific purpose of a test specimen dictates the requirements regarding its conception, including the exact design, the material or the fabrication accuracy and the conditioning. In the development of a general guideline by the UA-QS for application-specific procedures and their validation, the use of test specimens is addressed and specific concepts for the design of test specimens are made. This includes the analysis of the measurement process regarding any given application, deriving an adequate calibration approach for it and designing test specimens (calibration specimens) accordingly. Furthermore, it includes the validation of the procedure taking into account all conditions related to the specific application in the field. The validation requires a statistically sufficient number of trials. Thorough evaluation of each trial can only be established if the ground-truth is known. Therefore, test specimens providing a realistic but controlled simulation of the inspection problem are valuable and indispensable elements in the validation process. The requirement of being fully realistic will often not be possible to fulfill due to practical restrictions. Any aspect that cannot be included in the simulation realistically needs to be simulated conservatively. This again, requires a sufficient understanding of the inspection principle and technique to ensure conservativeness. Among other quality-assurance-related aspects, the UA-QS establishes concepts and guidelines regarding sound and efficient approaches for the specific purposes of test specimens. This subcommittee brings together representatives of different Groups along the entire value chain of NDT-CE, including researchers, practitioners, manufacturers and clients. They all work together in establishing a common understanding and level of quality assurance in the industry. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Quality assurance KW - Procedure KW - Reliability KW - Validation KW - Reference specimen PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 39 EP - 48 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559979 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Algernon, D. A1 - Arndt, R.W. A1 - Denzel, W. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C.U. A1 - Kathage, S. A1 - Keßler, S. A1 - Köpp, Christian A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Timofeev, Juri A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - NDT procedures in relation to quality assurance and validation of nondestructive testing in civil engineering N2 - The field of non-destructive testing of civil structures (NDT-CE) has been continuously growing. Due to the complexity and diversity of civil constructions as well as the heterogeneity of concrete, specific standards or guidelines for the application of modern NDT-CE are still missing. The development of individual solutions is the current approach, which is just as challenging as it is common for NDT-CE. With the increasing development and commercialization of NDT-CE technology, the group of practitioners is growing. To ensure a good level of quality in the industry, it appears necessary to establish adequate means. Naturally, the performance of NDT-CE methods regarding a specific application is strongly dependent on choosing the most suitable inspection technique and applying it correctly, generally referred to as the inspection procedure in the field of NDT. There are well-defined guidelines regarding procedure documentation and handling in many fields of NDT (e.g. nuclear, aerospace or automotive) according to the high importance of procedures in assuring a successful and reliable application. For a long time, this has not always been the case with NDT-CE, which is still considered a unique discipline of NDT. Part of the reason for that might be the young development state of NDTCE, the heterogeneity of building materials like concrete, timber or masonry as a material and the diversity of civil structures. In consequence, NDT-CE procedure development is considered challenging. Among other aspects, addressed in the subcommittee on Quality Assurance (UA-QS) within the committee for NDT-CE of the German Society for Nondestructive Testing (DGZfP), part of its work aims at establishing an adequate basis for NDT-CE procedure development. While some of the highly developed approaches from other industries are taken into consideration, they need to be analyzed regarding their suitability for NDT-CE and adapted accordingly. For a procedure to be as defined as possible, it needs to contain sufficient information, such as the scope and limitations regarding material, geometry and condition of the test object, inspection parameters, calibration, data acquisition, analysis criteria as well as requirements regarding the inspection personnel. For a successful implementation in the field, it is important to define the specific procedure as precisely as possible. Despite the necessity of a great amount of information to be included, the procedure needs to be suitable for efficient field application. The UA-QS is developing a guideline for NDT-CE procedures suitable for application in this field of NDT to ensure correct and reproducible application. To demonstrate and evaluate this concept, specific examples of procedures are also produced. In particular, the UA-QS has developed a procedure for the detection and positioning of tendon ducts using Ground Penetrating Radar (GPR). This procedure is tested regarding the practical applicability in a roundrobin on a defined type of reference test block. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Quality assurance KW - Procedure KW - Reliability KW - Validation KW - Reference specimen PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 31 EP - 38 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Imaging of Ultrasonic Echo Measurements for Reconstruction of Technical Data of Bridges – Possibilities, Limitations and Outlook N2 - When reassessing existing concrete bridges, the challenge is often to obtain missing or incomplete information on the internal structure. In particular, the number and position of the existing reinforcement as well as the geometric dimensions of the components are of interest. Non-destructive testing methods, like radar or ultrasound, which work on the basis of the pulse-echo method, have been established for this purpose, as they only require access to the component from one side. The measurement data recorded on the structure require pre-processing to be able to reproduce the internal structure geometrically accurately. Besides different steps of data processing, the geometrical reconstruction of the measured data based on the Synthetic Aperture Focusing Technique (SAFT) is state of the art today. In this paper, the technical possibilities of the ultrasonic echo method are presented based on measurements in the laboratory and on a real bridge structure. The precision of the reconstruction and its limitations are shown. In addition to the state of the art SAFT technique, open questions and the latest research approaches, such as imaging by reverse time migration (RTM) including initial results are discussed. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 29.08.2023 KW - Bridge KW - Non destructive testing and evaluation KW - Concrete KW - Validation PY - 2023 AN - OPUS4-58328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Imaging of Ultrasonic Echo Measurements for Reconstruction of Technical Data of Bridges – Possibilities, Limitations and Outlook N2 - When reassessing existing concrete bridges, the challenge is often to obtain missing or incomplete information on the internal structure. In particular, the number and position of the existing reinforcement as well as the geometric dimensions of the components are of interest. Non-destructive testing methods, like radar or ultrasound, which work on the basis of the pulse-echo method, have been established for this purpose, as they only require access to the component from one side. The measurement data recorded on the structure require pre-processing to be able to reproduce the internal structure geometrically accurately. Besides different steps of data processing, the geometrical reconstruction of the measured data based on the Synthetic Aperture Focusing Technique (SAFT) is state of the art today. In this paper, the technical possibilities of the ultrasonic echo method are presented based on measurements in the laboratory and on a real bridge structure. The precision of the reconstruction and its limitations are shown. In addition to the state of the art SAFT technique, open questions and the latest research approaches, such as imaging by reverse time migration (RTM) including initial results are discussed. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 29.08.2023 KW - Bridge KW - Non destructive testing and evaluation KW - Concrete KW - Validation PY - 2023 SP - 1 EP - 8 AN - OPUS4-58327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -