TY - CONF A1 - Koegler, M. A1 - Paul, Andrea A1 - Alborch, K. P. A1 - Birkholz, M. A1 - Junne, S. A1 - Neubauer, P. T1 - Raman on-line monitoring approach for bioprocess and bio-pharmaceutical manufacturing N2 - There is a high demand of monitoring in the era of QbD in industrial scale require new approaches to gain data rapidly and of sufficient quality in real time. Raman spectroscopy technology has great potential but not yet shown it fully in process on-line monitoring due to limitations such as i) uncomplete separation between cells and growth media alone, ii) general weak Raman signals of analytes in complex solutions and iii) strong background signals such as the auto-fluorescence, cosmic rays and surrounding lights overlapping the weak Raman signals. Here we demonstrate a Proof-of-Concept on an the example lactic acid bacteria process using a Streptococcus thermophiles fermentation. Results from three different Raman approaches are presented: 1) Time-Gated Raman Spectroscopy (TG-Raman), 2) Surface Enhanced Raman Spectroscopy (SERS) and 3) Raman process spectroscopy with NIR excitation combined with multivariate data analysis (MVDA) using Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR). T2 - 12. Kolloquium Arbeitskreis Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Raman KW - Chemometrics KW - SERS KW - TimeGate PY - 2016 SP - 91 EP - 93 CY - Berlin AN - OPUS4-38673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koegler, M. A1 - Paul, Andrea A1 - Anane, E. A1 - Birkholz, M. A1 - Bunker, A. A1 - Viitala, T. A1 - Maiwald, Michael A1 - Junne, S. A1 - Neubauer, P. T1 - Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples N2 - The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here, we compare time-gated Raman (TG-Raman)-, continuous wave NIRprocess Raman (NIR-Raman), and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP, and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids, and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. KW - Time-gated Raman (TG-Raman) KW - Surface-enhanced Raman spectroscopy (SERS) KW - Multivariate data analysis KW - Metabolite quantification KW - Escherichia coli PY - 2018 U6 - https://doi.org/10.1002/btpr.2665 SN - 1520-6033 SN - 8756-7938 VL - 34 IS - 6 SP - 1533 EP - 1542 PB - Wiley AN - OPUS4-45831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -