TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Hauke, M. A1 - Schweitzer, T. A1 - Maack, Stefan T1 - Frequency modulated, air-coupled ultrasound generated by fluidic oscillators T2 - Proceedings of the IEEE International Ultrasonics Symposium N2 - The majority of ultrasonic devices used for non-destructive testing in civil engineering require contact with the surface of the concrete (specimen), which significantly increases the time required for the measurement. This makes it impractical for extensive investigation of large-scale structures such as bridge decks, foundations, or tunnels. In a pioneering approach, fluidic oscillators are used as contact free ultrasonic sources to overcome the aforementioned limitations. These robust and cost-effective actuators require only pressurised air and are ideally suited for harsh environments. At a constant supply pressure, they generate a continuous mono-frequent actuation signal. Further, varying the supply pressure via a fast pressure regulator was found to generate a frequency modulated signal which enabled time-of-flight measurement with an added advantage of increased signal to noise ratio. To demonstrate the feasibility of this novel idea of non-contact ultrasound, the results of the initial tests are presented. T2 - IEEE International Ultrasound Symposium CY - Venice, Italy DA - 11.10.2022 KW - Air-coupled ultrasound KW - Frequency modulation KW - Non-destructive testing KW - Civil engineering KW - Building materials KW - Fluidic oscillators PY - 2022 DO - https://doi.org/10.1109/IUS54386.2022.9958740 SP - 1 EP - 4 AN - OPUS4-56073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Hauke, M. A1 - Schweitzer, T. A1 - Maack, Stefan T1 - Frequency modulated, air-coupled ultrasound generated by fluidic oscillators N2 - The majority of ultrasonic devices used for non-destructive testing in civil engineering require contact with the surface of the concrete (specimen), which significantly increases the time required for the measurement. This makes it impractical for extensive investigation of large-scale structures such as bridge decks, foundations, or tunnels. In a pioneering approach, fluidic oscillators are used as contact free ultrasonic sources to overcome the aforementioned limitations. These robust and cost-effective actuators require only pressurised air and are ideally suited for harsh environments. At a constant supply pressure, they generate a continuous monofrequent actuation signal. Further, varying the supply pressure via a fast pressure regulator was found to generate a frequency modulated signal which enabled time-of-flight measurement with an added advantage of increased signal to noise ratio. To demonstrate the feasibility of this novel idea of non-contact ultrasound, the results of the initial tests are presented. T2 - IEEE International Ultrasound Symposium CY - Venice, Italy DA - 11.10.2022 KW - Air coupled ultrasound KW - Frequency modulation KW - Non-destructive testing KW - Civil engineering KW - Building materials KW - Fluidic oscillators PY - 2022 AN - OPUS4-56069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Hauke, M. A1 - Schweitzer, T. A1 - Maack, Stefan T1 - Frequency modulated, air-coupled ultrasound generated by fluidic oscillators N2 - The majority of ultrasonic devices used for non- destructive testing in civil engineering require contact with the surface of the concrete (specimen), which significantly increases the time required for the measurement. This makes it impractical for extensive investigation of large-scale structures such as bridge decks, foundations, or tunnels. In a pioneering approach, fluidic oscillators are used as contact free ultrasonic sources to overcome the aforementioned limi- tations. These robust and cost-effective actuators require only pressurised air and are ideally suited for harsh environments. At a constant supply pressure, they generate a continuous mono- frequent actuation signal. Further, varying the supply pressure via a fast pressure regulator was found to generate a frequency modulated signal which enabled time-of-flight measurement with an added advantage of increased signal to noise ratio. To demonstrate the feasibility of this novel idea of non-contact ultrasound, the results of the initial tests are presented. T2 - IEEE International Ultrasound Symposium CY - Venice, Italy DA - 11.10.2022 KW - Air-coupled ultrasound KW - Frequency modulation KW - Non-destructive testing KW - Civil engineering KW - Building materials KW - Fluidic oscillators PY - 2022 AN - OPUS4-56072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -