TY - JOUR A1 - Matschat, Ralf A1 - Richter, Silke A1 - Vogl, Jochen A1 - Kipphardt, Heinrich T1 - On the way to SI traceable primary transfer standards for amount of substance measurements in inorganic chemical analysis N2 - During its 25 years of existence, the Inorganic Analysis Working Group of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM IAWG) has achieved much in establishing comparability of measurement results. Impressive work has been done on comparison exercises related to real-world problems in fields such as ecology, food, or health. In more recent attempts, measurements and comparisons were focused on calibration solutions which are the basis of most inorganic chemical measurements. This contribution deals with the question of how to achieve full and transparent SI traceability for the values carried by such solutions. Within this framework, the use of classical primary methods (CPMs) is compared to the use of a primary difference method (PDM). PDM is a method with a dual character, namely a metrological method with a primary character, based on the bundling of many measurement methods for individual impurities, which lead to materials with certified content of the main component. As in classical methods, where small corrections for interferences are accepted, in PDM, many small corrections are bundled. In contrast to classical methods, the PDM is universally applicable to all elements in principle. Both approaches can be used to certify the purity (expressed as mass fraction of the main element) of a high-purity material. This is where the metrological need of National Metrology Institutes (NMIs) for analytical methods meet the challenges of analytical methods. In terms of methods, glow discharge mass spectrometry (GMDS) with sufficient uncertainties for sufficiently small impurity contents is particularly noteworthy for the certification of primary transfer standards (PTS), and isotope dilution mass spectrometry (IDMS), which particularly benefits from PTS (back-spikes) with small uncertainties, is particularly noteworthy for the application. The corresponding relative uncertainty which can be achieved using the PDM is very low (< 10−4). Acting as PTS, they represent the link between the material aspect of the primary calibration solutions and the immaterial world of the International System of Units (SI). The underlying concepts are discussed, the current status of implementation is summarised, and a roadmap of the necessary future activities in inorganic analytical chemistry is sketched. It has to be noted that smaller measurement uncertainties of the purity of high-purity materials not only have a positive effect on chemical measurements, but also trigger new developments and findings in other disciplines such as thermometry or materials science. KW - Inorganic chemical analysis KW - Primary transfer standards (PTSs) KW - Traceability KW - Classical primary measurement method (CPM) KW - Primary difference measurement method (PDM) KW - Metrology in chemistry PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572743 SN - 1618-2642 SN - 1618-2650 VL - 415 SP - 3057 EP - 3071 PB - Springer CY - Berlin AN - OPUS4-57274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Stephan, D. A1 - Ostermann, Markus A1 - Possolo, A. A1 - Vogl, Jochen T1 - Fingerprinting Portland cements by means of 87Sr/86Sr and 143Nd/144Nd isotope ratios and geochemical profiles N2 - This study uses conventional 87Sr/86Sr and 143Nd/144Nd isotope and interelement ratios of Ca, Sr, K, Mn, Mg and Ti as fingerprints for provenancing ordinary Portland cements (OPC). Herein, the first database of Sr and Nd isotope ratios investigated in OPCs, stemming from 29 cement plants located worldwide, was created. The results show that the Sr isotope ratios of OPCs are higher than those of seawater from the observed geological period. The spread of 143Nd/144Nd in OPCs is not as large as the spread for 87Sr/86Sr isotope ratios. However, the combination of both Sr and Nd isotope ratios provides the potential for distinguishing between cements of different production sites. Most of the OPCs investigated have measurable differences in their 87Sr/86Sr and 143Nd/144Nd isotope ratios, which can be employed as a valuable analytical fingerprinting tool. In the case of equivocal results, divisive hierarchical clustering was employed to help overcome this issue. The construction of geochemical profiles allowed the computing of suitably defined distances between cements and clustering them according to their chemical similarity. By applying this methodology, successful fingerprinting was achieved in 27 out of the 29 ordinary Portland cements that were analysed. KW - Elemental fingerprints KW - Geochemistry KW - Portland cement KW - Sr and Nd isotope analysis KW - Statistical analysis PY - 2023 U6 - https://doi.org/10.1680/jadcr.23.00018 SN - 0951-7197 SP - 1 EP - 12 PB - Emerald Publishing Limited AN - OPUS4-57979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balderas-Xicohtencatl, R. A1 - Villajos Collado, José Antonio A1 - Casabán, J. A1 - Wong, D. A1 - Maiwald, Michael A1 - Hirscher, M. T1 - ZIF‑8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks N2 - Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal−organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets. The hydrogen storage capacity at 77 K and up to 100 bar has been analyzed in two laboratories applying three different measurement setups showing a high reproducibility. Pelletizing ZIF-8 increases the packing density close to the corresponding value for a single crystal without loss of porosity, resulting in an improved volumetric hydrogen storage capacity close to the upper limit for a single crystal. The high volumetric uptake combined with a low and constant heat of adsorption provides ca. 31 g of usable hydrogen per liter of pellet assuming a temperature−pressure swing adsorption process between 77 K − 100 bar and 117 K − 5 bar. Cycling experiments do not indicate any degradation in storage capacity. The excellent stability during preparation, handling, and operation of ZIF-8 pellets demonstrates its potential as a robust adsorbent material for technical application in pilot- and full-scale adsorption vessel prototypes. KW - Hydrogen adsorption storage KW - Metal−organic frameworks KW - ZIF-8 KW - Cryoadsorption KW - Hydrogen Storage KW - MefHySto PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569473 SN - 2574-0962 SP - 1 EP - 8 PB - ACS Publications CY - Washington DC AN - OPUS4-56947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tchipilov, Teodor A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification N2 - Hydrolysis of protein samples into amino acids facilitates the use of NMR spectroscopy for protein and peptide quantification. Different conditions have been tested for quantifying aromatic amino acids and proteins. The pH-dependent signal shifts in the aromatic region of amino acid samples were examined. A pH of 12 was found to minimize signal overlap of the four aromatic amino acids. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, were applied as internal standards. The quantification of amino acids from an amino acid standard was performed. Using the first two suggested internal standards, recovery was ~97% for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98% ± 2% and 88% ± 4%, respectively, at a protein concentration of 16 g/L or 250 µM. KW - Amino acid analysis KW - Aromatic amino acid analysis KW - AAA KW - AAAA KW - Protein hydrolysis KW - Hydrochloric acid KW - Metrology KW - Traceability KW - NIST KW - Reference materials KW - Internal standard KW - Calibration KW - Compound-independent calibration KW - Histidine KW - Tyrosine KW - Tryptophan KW - Phenylalanine KW - Terephthalic acid KW - Benzene-1,3,5-tricarboxylic acid KW - Bovine serum albumin (BSA) KW - Quantitative protein analysis KW - Phenylketonuria PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-570943 VL - 6 IS - 1 SP - 1 EP - 13 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Meyer, Klas A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions towards variable temperature shielding for compact NMR instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. KW - Benchtop NMR KW - Continuous Processes KW - Inline Analytics KW - Model Predictive Control KW - Process Analytical Tecnology KW - Temperature Control PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579219 SN - 1097-458X SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-57921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569198 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erler, A. A1 - Riebe, D. A1 - Beitz, T. A1 - Löhmannsröben, H.-G. A1 - Leenen, M. A1 - Pätzold, S. A1 - Ostermann, Markus A1 - Wójcik, M. T1 - Mobile Laser-Induced Breakdown Spectroscopy for Future Application in Precision Agriculture—A Case Study N2 - In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements KW - LIBS KW - Precision agriculture KW - Soil KW - Multivariate methods KW - Feature selection PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580777 VL - 23 IS - 16 SP - 1 EP - 17 PB - MDPI AG CY - Basel, Schweiz AN - OPUS4-58077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Krom, I. A1 - Heikens, D. A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Baldan, A. T1 - Metrological generation of SI-traceable gas-phase standards and reference materials for (semi-) volatile organic compounds N2 - EN 16516 sets specifications for the determination of emissions into indoor air from construction products. Reliable, accurate and International System of Unit (SI)-traceable measurement results of the emissions are the key to consumer protection. Such measurement results can be obtained by using metrologically traceable reference materials. Gas-phase standards of volatile organic compounds (VOCs) in air can be prepared by a variety of dynamic methods according to the ISO 6145 series. However, these methods are not always applicable for semi-VOCs (SVOCs) due to their high boiling point and low vapour pressure. Therefore, a novel dynamic gas mixture generation system has been developed. With this system gas-phase standards with trace level VOCs and SVOCs in air can be prepared between 10 nmol mol−1 and 1000 nmol mol−1. The VOCs and SVOCs in this study have normal boiling points ranging from 146 °C to 343 °C. Metrologically traceable reference materials of the gas-phase standard were obtained by sampling of the VOC gas-phase standard into Tenax TA® sorbent material in SilcoNert® coated stainless steel tubes. Accurately known masses between 10 ng and 1000 ng per VOC were sampled. These reference materials were used to validate the dynamic system. Furthermore, the storage and stability periods of the VOCs in the reference materials were determined as these are crucial characteristics to obtain accurate and SI-traceable reference materials. In a round robin test (RRT), the reference materials were used with the aim of demonstrating the feasibility of providing SI-traceable standard reference values for SVOCs for interlaboratory comparison purposes. Based on the results from the validation, the storage and stability studies and the RRT, gas-phase standards and reference materials of VOCs and SVOCs with relative expanded uncertainties between 5% and 12% (k = 2) have been developed. These reference standards can be used as calibrants, reference materials or quality control materials for the analysis of VOC emissions. KW - SVOC KW - Dynamic calibration gas mixtures KW - Reference materials KW - Indoor air KW - Thermal desorption PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565978 VL - 34 IS - 3 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, O. A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. KW - Mechanochemistry KW - In situ Raman KW - Large-scale processing KW - Metal−organic frameworks KW - Twin-screw extrusion (TSE) PY - 2023 U6 - https://doi.org/10.1021/acssuschemeng.2c07509 SN - 2168-0485 VL - 11 IS - 13 SP - 5175 EP - 5183 PB - ACS Publications AN - OPUS4-57366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -