TY - JOUR A1 - Villajos Collado, José Antonio T1 - Experimental volumetric hydrogen uptake determination at 77 K of commercially available metal-organic framework materials N2 - Storage is still limiting the implementation of hydrogen as an energy carrier to integrate the intermittent operation of renewable energy sources. Among different solutions to the currently used compressed or liquified hydrogen systems, physical adsorption at cryogenic temperature in porous materials is an attractive alternative due to its fast and reversible operation and the resulting reduction in storage pressure. The feasibility of cryoadsorption for hydrogen storage depends mainly on the performance of the used materials for the specific application, where metal-organic frameworks or MOFs are remarkable candidates. In this work, gravimetric and volumetric hydrogen uptakes at 77 K and up to 100 bar of commercially available MOFs were measured since these materials are made from relatively cheap and accessible building blocks. These materials also show relatively high porous properties and are currently near to large-scale production. The measuring device was calibrated at different room temperatures to calculate an average correction factor and standard deviation so that the correction deviation is included in the measurement error for better comparability with different measurements. The influence of measurement conditions was also studied, concluding that the available adsorbing area of material and the occupied volume of the sample are the most critical factors for a reproducible measurement, apart from the samples’ preparation before measurement. Finally, the actual volumetric storage density of the used powders was calculated by directly measuring their volume in the analysis cell, comparing that value with the maximum volumetric uptake considering the measured density of crystals. From this selection of commercial MOFs, the materials HKUST-1, PCN-250(Fe), MOF-177, and MOF-5 show true potential to fulfill a volumetric requirement of 40 g·L−1 on a material basis for hydrogen storage systems without further packing of the powders. KW - Hydrogen adsorption KW - Commercial metal-organic frameworks KW - Hydrogen uptake reproducibility KW - Volumetric uptake KW - Packing density PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542215 SN - 2311-5629 VL - 8 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-54221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547397 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546823 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Liehr, Sascha T1 - ANNforPAT - Artificial Neural Networks for Process Analytical Technology N2 - This code accompanies the paper "Artificial neural networks for quantitative online NMR spectroscopy" published in Analytical and Bioanalytical Chemistry (2020). KW - Artificial neural networks KW - Automation KW - Online NMR spectroscopy KW - Process industry KW - Real-time process monitoring PY - 2020 UR - https://github.com/BAMresearch/ANNforPAT PB - GitHub CY - San Francisco AN - OPUS4-54481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Broszies, T. A1 - Zänker, Steffen A1 - Schaudienst, F. A1 - Paul, Andrea A1 - Vogdt, F. U. T1 - Remelting Miwo - Recycling von Mineralwolldämmstoffen, die im Schmelzwannenverfahren hergestellt werden N2 - Rückgebaute Mineralwolledämmstoffe und Baustellenverschnitte werden in der Regel deponiert und damit als Rohstoffe dem Markt entzogen. Ziel dieses Projektes ist es darzulegen, dass das Recycling von Glas- und Steinwolle im großmaßstäblich volumenrelevanten Umfang für das Schmelzwannenverfahren technisch umsetzbar und ökonomisch und ökologisch vorteilhaft ist. Neben verfahrenstechnischen Herausforderungen, gilt es die wirtschaftliche in-situ-Identifikation unbekannter Mineralwolle zu ermöglichen. Dazu wird auf erste erfolgversprechende Tastversuche mit spektroskopischen Methoden weiter aufgebaut. T2 - 18. Projektetage der Bauforschung CY - Online meeting DA - 09.11.2021 KW - Mineralwolle KW - Circular Economy KW - NIR KW - RFA PY - 2021 UR - https://www.zukunftbau.de/veranstaltungen/projektetage-der-bauforschung/rueckblicke#c8553 AN - OPUS4-53982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, J. A. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine in Amperometric Assays N2 - Electrochemical methods offer great promise in meeting the demand for user-friendly on-site devices for Monitoring important parameters. The food industry often runs own lab procedures, for example, for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with smart technologies. Enzyme-linked immunosorbent assays, with photometric detection of 3,3’,5,5’-tetramethylbenzidine (TMB),form a good basis for sensitive detection. To provide a straightforward approach for the miniaturization of the detectionstep, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. A stable electrode response to TMB could be achieved at pH 1 on gold electrodes. We created a smartphonebased, electrochemical, immunomagnetic assay for the detection of ochratoxin A in real samples, providing a solid basis forsensing of further analytes. KW - Ochratoxin A KW - Amperometry KW - Cyclic voltammetry KW - Electrochemistry KW - Immunoassay PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530421 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 8 IS - 13 SP - 2597 EP - 2606 AN - OPUS4-53042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Serrano Oliver, Ana A1 - Baumgart, S. A1 - Bremser, Wolfram A1 - Flemig, Sabine A1 - Wittke, D. A1 - Grützkau, A. A1 - Luch, A. A1 - Haase, A. A1 - Jakubowski, Norbert T1 - Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode N2 - The impact of nanoparticles, NPs, at the single cell level has become a major field of toxicological research and different analytical methodologies are being investigated to obtain biological and toxicological information to better understand the mechanisms of cell–NP interactions. Here, inductively coupled plasma mass spectrometry in the single cell measurement mode (SC-ICP-MS) is proposed to study the uptake of silver NPs, AgNPs, with a diameter of 50 nm by human THP-1 monocytes in a proof-ofprinciple experiment. The main operating parameters of SC-ICP-MS have been optimized and applied for subsequent quantitative analysis of AgNPs to determine the number of particles in individual cells using AgNP suspensions for calibration. THP-1 cells were incubated with AgNP suspensions with concentrations of 0.1 and 1 µg/mL for 4 and 24 hours. The results reveal that the AgNP uptake by THP-1 monocytes is minimal at the lower dose of 0.1 µg/mL (roughly 1 AgNP per cell was determined), whereas a large cell-to-cell variance dependent on the exposure time is observed for a 10 times higher concentration (roughly 7 AgNPs per cell). The method was further applied to monitor the AgNP uptake by THP-1 cells differentiated macrophages incubated at the same AgNP concentration levels and exposure times demonstrating a much higher AgNP uptake (roughly from 9 to 45 AgNPs per cell) that was dependent on exposure concentration and remained constant over time. The results have been compared and validated by sample digestion followed by ICP-MS analysis as well as with other alternative promising techniques providing single cell analysis. KW - Silbernanopartikel KW - ICP-MS KW - Einzelzellanalyse PY - 2018 U6 - https://doi.org/10.1039/C7JA00395A SN - 0267-9477 VL - 33 IS - 7 SP - 1256 EP - 1263 PB - Royal Society of Chemistry CY - London AN - OPUS4-45473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Büchele, Dominique A1 - Rühlmann, Madlen A1 - Schmid, Thomas A1 - Ostermann, Markus T1 - Comparison between uni- and multivariate data analysis for the determination of nutrients in soils using XRF N2 - Aim of the Federal Institute for Materials Research and Testing (BAM) in the frame of I4S - “Intelligence for Soil” is the characterization of an X-ray fluorescence (XRF) based sensor for robust online-application of arable land.Fast soil mapping for agricultural purpose allows the site-specific optimized introduction of plant essential nutrients like S, K, Ca, and Fe. This is important given that the distribution of minor and trace elements varies widely. The non-destructive and contactless XRF is suitable for rapid in-situ analysis on the field due to minimal sample preparation and simultaneous multi-element analysis. Soils are already considered as a complex matrix due to their wide range of elements in different contents, especially light elements with low atomic numbers (Z<19). Problems by measuring soil samples also arise from heterogeneity of the sample and matrix effects. Large grain size distribution causes strong inhomogeneity and matrix effects occur through physical properties related to high concentration of main components. Matrix-specific calibration strategies for determination of total major and minor plant essential nutrients are particularly important regarding these difficulties. For accurate calibration, data treatment and evaluation must also be considered. Empirical univariate and multivariate data analysis were compared regarding their analytical figures of merit. Using principal component analysis (PCA) it was possible to classify German soils in different groups as sand, clay and silt. A calibration curve was obtained by partial least squares regression (PLSR) and the elemental content of German soils was predicted. Elemental distribution maps for different German arable lands were created and the results compared to reference measurements. The correlation between predicted values and reference values were in good agreement for most major and minor nutrients. T2 - BonaRes Conference CY - Berlin, Germany DA - 26.02.2018 KW - PLSR KW - XRF KW - Soil KW - PCA PY - 2018 AN - OPUS4-45007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Determination of plant essential nutrients in soils using DP-LIBS N2 - In respect of an efficient cultivation of agricultural cropland, a site-specific fertility management is necessary. Therefore, affordable and extensive mapping methods are needed. The research projects I4S (intelligence for soil) has the goal to develop a system for this purpose. I4S is one of ten interdisciplinary research project associations of the innovation programme called BonaRes, which is funded by the German Federal Ministry of Education and Research (BMBF). The system includes a sensor platform, which contains different sensors, like XRF, VIS-NIR, Gamma and LIBS. The main task of LIBS measurements in this project is the real-time determination of the elemental contents of major and minor nutrients in soils, like calcium, magnesium, potassium. LIBS (laser-induced breakdown spectroscopy) is known as a fast and simultaneous multi-element analysis with little or no sample preparation. The main task of LIBS measurements in this project is the real-time determination of the elemental contents of nutrients in soils, like calcium, magnesium, potassium. For this purpose, a special setup has been designed. The sample uptake operates with the help of a rotatable sample plate which circulates with different velocities to simulate the application on the field. To provide a higher intensity and a better reproducibility of the obtained signal, a double-pulse Nd:YAG laser (1064 nm)was used. In order to minimize dust formation from the soil during the operation of the laser, a dust removal by suction has been integrated. When using relative methods such as LIBS, a suitable calibration curve is needed for absolute quantification. The complex matrix of soils, as well as the influence of moisture and grain size in soils makes the absolute quantification by LIBS challenging. To overcome these influences, chemometric methods were used. With the principal component analysis (PCA) a classification of soils into different soil types was performed and a calibration curve based on partial least squares regression (PLSR) was generated. With this calibration model’s elemental distribution maps for different German agricultural fields were created. T2 - ESAS CANSAS CY - Berlin, Germany DA - 20.03.2018 KW - LIBS KW - Soil KW - PCA KW - PLSR PY - 2018 AN - OPUS4-45008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Büchele, Dominique A1 - Rühlmann, Madlen A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Comparison between uni- and multivariate data Analysis for the determination of nutrients in soils using XRF N2 - As part of the BonaRes research initiative funded by the German Federal Ministry of Education and Research (BMBF), strategies are being developed to use soil as a sustainable resource in the bioeconomy. The interdisciplinary subproject I4S - “Intelligence for soil” - is responsible for the development of an integrated system for site-specific management of soil fertility. For this purpose, a platform is constructed and various sensors are installed. Real-time data will be summarized in models and decision-making algorithms will be used to control fertilization and accordingly improve soil functions. This would allow investigations in close meshed dynamic grid and fast analysis of large areas to generate higher yields. This is important given that the distribution of minor and trace elements varies widely. Aim of the Federal Institute for Materials Research and Testing (BAM) in the frame of I4S is the characterization of an X-ray fluorescence (XRF) based sensor for robust online-analysis of arable land. The non-destructive and contactless XRF is suitable for rapid in-situ analysis on the field due to minimal sample preparation and simultaneous multi-element analysis. Soils are already considered as a complex matrix due to their wide range of elements in different contents, especially light elements with low atomic numbers (Z<19). Problems by measuring soil samples also arise from heterogeneity of the sample and matrix effects. Large grain size distribution causes strong inhomogeneity and matrix effects occur through physical properties related to high concentration of main components. Matrix-specific calibration strategies for determination of total major and minor plant essential nutrients are particularly important regarding these difficulties. For accurate calibration, data treatment and evaluation must also be considered. Univariate and multivariate data analysis were compared regarding their analytical figures of merit. Using principal component analysis (PCA) it was possible to classify German soils in different groups as sand, clay and silt. Calibration models were obtained by partial least squares regression (PLSR) and the content of macro- and micronutrients in German soils was predicted. Elemental distribution maps for different German arable lands were created and the results compared to reference measurements. The correlation between predicted values and reference values were in good agreement for most major and minor nutrients. T2 - ESAS/CANAS CY - Berlin, Germany DA - 20.03.2018 KW - Soil KW - XRF KW - PCA KW - PLSR PY - 2018 AN - OPUS4-45010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -