TY - CONF A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Riedel, Jens T1 - Laser-spark ionization mass spectrometry N2 - A versatile ionization scheme for atmospheric pressure MS is presented. It is based on a quasi-continuous laser-induced plasma (LIP), generated by a 26 kHz pulsed DPSS-laser, which is ignited in front of the MS inlet. Analytes are determined with different sampling regimes, comprising either an ambient desorption/ionization mechanism, a liquid-phase or gas-phase sample introduction. The MS signal closely resembles the ionization behavior of APCI-like plasma-based sources, such as DBD or DART. Though LIPs are known to efficiently atomize/ionize any sample material, mass spectra of intact molecular ions are recorded, exhibiting low fragment-ion content. To understand this contradictory behavior, the plasma properties are investigated that lead to the formation of molecular ions. Comprehensive studies include optical emission spectroscopy, shadowgraph imaging and mass spectrometry diagnostics. The results show that the ionization of analyte does not occur in the plasma itself, but in the cold adjacent gas layer. The pulsed character of LIPs induces an expanding shockwave, which concentrically expands around the plasma core and sweeps the molecules toward the plasma edges, where they are ionized either directly by the self-emission of the hot core or via interaction with secondary reactants. However, this unidirectional transport causes a rarefaction inside the plasma center, which leads to a decrease in plasma intensity and number density. Thus, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favorable. Besides gas replenishing, we demonstrate the beneficial use of an acoustical standing wave inside an ultrasonic resonator on the performance of the LIP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark ionization KW - Laser-induced plasma KW - Ambient mass spectrometry KW - DPSS laser PY - 2018 AN - OPUS4-44492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Airborne laser-spark for ambient desorption/ionization of liquids N2 - The development and enhancement of new ionization techniques for mass spectrometry often needs to be custom-tailored for specific sampling approaches. Here, a direct sampling ionization technique is presented for ambient mass spectrometry. Ambient mass spectrometry based techniques are typically used to analyze samples in their native states without sample pretreatment. This new design is based on a quasi-continuous airborne plasma which is ignited inside the particulate air via a focused laser irradiation. Desorption and ionization of the analyte molecules are achieved by the laser plasma without reaching the plasma. The ionization process is induced by interaction with nascent ionic fragments, electrons and ultraviolet photons in the plasma vicinity. Previously, this method was solely used for the characterization of solid and gaseous analytes. The sample introduction was occurred via thermal desorption and headspace analysis. This study focuses on the potential applicability of liquid samples. In comparison to previous approaches, the usage of liquid samples has an impact on the stability of typically used plasma of 532 nm. It was necessary to realize an alternative plasma using light of the fundamental wavelength of 1064 nm. That new plasma resulted in a significant more stable and bright plasma and the first laser plasma ionization spectrum was recorded for an analyte in the condensed phase with a mass spectrometer of type LCQ DecaXP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark KW - Laser-induced plasma KW - Ambient mass spectrometry KW - Ambient desorption/ionization KW - DPSS laser PY - 2018 AN - OPUS4-44493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -