TY - CONF A1 - Epping, Ruben A1 - Falkenhagen, Jana T1 - Characterization of small heterogeneities in polymers by analysis of UPLC/ESI-MS reconstructed ion chromatograms N2 - From simple molar mass disperse homopolymers over copolymers to functionalized, 3-dimensional structures containing various distributions, the complexity of polymeric materials has become more and more sophisticated in recent years. With applications in medicine, pharmacy, smart materials or for the semiconductor industry the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, here a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. We used SEC for the separation because unlike other separation modes the separation in this mode solely should occur due to the hydrodynamic volume with no interference of other interactions. This simplifies the interpretation and the above mentioned heterogeneities should show a slight difference in hydrodynamic volume. ESI mass spectrometry can offer more than an access to mass dependent information like MMD, end group masses or CCD in polymer analysis. The online coupling to SEC allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible or accessible only by time consuming or expensive methods. Because these heterogeneities might vary with the molar mass, analysis of the whole MMD-Peak (here the total ion current (TIC)) would not lead to the desired information. The broadening of the chromatographic peaks in this case does not origin from the already well known band broadening factors in chromatography from diffusion. This band broadening is attributed to the nature and composition of the analyte itself. Surprisingly there is very little investigation into the peak width or peak shape due to analyte structure itself found in literature. It is also shown, that with proper calibration even quantitative information could be obtained. This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples we demonstrate the possibilities and limitations of this approach. T2 - HTC-15 CY - Cardiff, UK DA - 24.01.2018 KW - UPLC/ESI-MS KW - Reconstructed chromatograms KW - Polymer analysis KW - Microstructure PY - 2018 AN - OPUS4-44137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Panne, Ulrich A1 - Falkenhagen, Jana T1 - Power of ultra performance liquid chromatography/electrospray ionization-MS reconstructed ion chromatograms in the characterization of small differences in polymer microstructure JF - Analytical Chemistry N2 - From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications for instance in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector, but affect the properties of materials significantly. For a drug delivery system for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown, that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in e. g. branching, 3d-structure, monomer sequence or tacticity and could potentially be used in routine analysis to quickly determine deviations. KW - Polymer KW - Microstructure KW - UPLC KW - ESI-TOF-MS KW - Reconstructed ion chromatograms PY - 2018 DO - https://doi.org/10.1021/acs.analchem.7b05214 SN - 0003-2700 SN - 1520-6882 VL - 90 IS - 5 SP - 3467 EP - 3474 PB - ACS Publ. CY - Washington, DC AN - OPUS4-44423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers JF - Analytical Science Advances N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -