TY - JOUR A1 - Vössing, Konrad A1 - Niederleithinger, Ernst ED - Faix, O. T1 - Nondestructive assessment and imaging methods for internal inspection of timber. A review. JF - Holzforschung N2 - This paper reviews state-of-the-art in nondestructive testing (NDT) and semidestructive testing (SDT) methods applicable for imaging the condition of structural timber. Both NDT and SDT imaging reveal defects, damages, and decay, while the extent of wood decay can also be quantified. Combined with an appropriate data interpretation concerning the internal defects, the mechanical properties of the material can also be assessed. The possibilities and limitations of the most relevant individual NDT and SDT methods, also in combination with each other, are outlined and compared. To facilitate comparison, many observations are reported based on the same test specimen. KW - Drilling resistance KW - Electrical resistivity KW - Radar KW - Radiography KW - Sonic stress wave KW - Ultrasound KW - Non destructive testing KW - Timber structure PY - 2018 DO - https://doi.org/10.1515/hf-2017-0122 SN - 0018-3830 SN - 1437-434X VL - 72 IS - 6 SP - 467 EP - 476 PB - De Gruyter CY - Berlin AN - OPUS4-44445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Herbrand, M. A1 - Müller, M. T1 - Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams JF - Sensors N2 - Ultrasonic transmission measurements have been used for decades to monitor concrete elements, mostly on a laboratory scale. Recently, coda wave interferometry (CWI), a technique adapted from seismology, was introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete laboratory samples and even large structural elements without having a transducer directly at the place where the change is taking place. Here, several load tests until failure on large posttensioned concrete beams have been monitored using networks of embedded transducers. To detect subtle effects at the beginning of the experiments and cope with severe changes due to cracking close to failure, the coda wave interferometry procedures had to be modified to an adapted step-wise approach. Using this methodology, we were able to monitor stress distribution and localize large cracks by a relatively simple technique. Implementation of this approach on selected real structures might help to make decisions in infrastructure asset management. KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda wave interferometry KW - Embedded transducers PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452328 DO - https://doi.org/10.3390/s19010147 SN - 1424-8220 VL - 19 IS - 1 SP - Article 147, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-45232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Mierschke, Vivien A1 - Bertschat, Anja Sophie T1 - Concepts from seismic interferometry transferred to sonic and ultrasonic concrete inspection and monitoring JF - The e-journal of nondestructive testing & ultrasonics N2 - Seismic interferometry (SI) deals either with the sensible detection of changes in the subsurface or with the reconstruction of virtual signals between two receivers by crosscorrelation of signals from diffuse sources. These concepts can be applied in NDT in civil engineering for various purposes, e. g. to detect changes in bridges. Here it is demonstrated using data from a reference structure on our test site. Practical applications can be expected in the very near future. T2 - 12th European Conference on Non-Destructive Testing (ECNDT 2018) CY - Gothenburg, Sweden DA - 11.6.2018 KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda KW - Interferometry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468465 UR - http://www.ndt.net/?id=22760 SN - 1435-4934 VL - 23 IS - 8 SP - 1 EP - 2 PB - NDT.net CY - Kirchwald AN - OPUS4-46846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of concrete constructions using embedded transducers JF - The e-journal of nondestructive testing & ultrasonics N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil Engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. T2 - International Symposium on Structural Health Monitoring and Nondestructive Testing CY - Saarbrücken, Germany DA - 4.10.2018 KW - Ultrasound KW - Monitoring KW - Concrete PY - 2018 UR - http://www.ndt.net/?id=23542 SN - 1435-4934 VL - 23 IS - 12 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-46842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Air‑coupled ferroelectret ultrasonic transducers for nondestructive testing of wood‑based materials JF - Wood Science and Technology N2 - Air-coupled ultrasound (ACU) is used in through transmission to detect delamination, rot, and cracks in wood without altering the structure permanently. Novel ferroelectret transducers with a high signal-to-noise ratio enable high-precision structure recognition. Transducers made of cellular polypropylene are quite suitable for ACU testing due to their extremely low Young’s modulus and low density resulting in a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. Thus, structures with great dimensions, with a thickness of up to 300 mm and material densities below 500 kg/m3, can be inspected. Promising results were obtained under laboratory conditions with frequencies ranging from 90 to 200 kHz. The advantage of ACU transducers is that they do not equire contact to the sample; they are accurate and cost-effective. Ultrasonic quality assurance for wood is an important avenue to increase the acceptance of wooden structures and toward sustainability in civil engineering in general. KW - Ultrasound KW - Wood KW - Defect KW - Air-coupled PY - 2018 DO - https://doi.org/10.1007/s00226-018-1052-8 VL - 52 IS - 6 SP - 1527 EP - 1538 PB - Springer AN - OPUS4-46653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tiitta, M. A1 - Tiitta, V. A1 - Gaal, Mate A1 - Heikkinen, J. A1 - Lappalainen, R. A1 - Tomppo, L. T1 - Air-coupled ultrasound detection of natural defects in wood using ferroelectret and piezoelectric sensors JF - Wood Science and Technology N2 - Air-coupled ultrasound was used for assessing natural defects in wood boards by through-transmission scanning measurements. Gas matrix piezoelectric (GMP) and ferroelectret (FE) transducers were studied. The study also included tests with additional bias voltage with the ferroelectret receivers. Signal analyses, analyses of the measurement dynamics and statistical analyses of the signal parameters were conducted. After the measurement series, the samples were cut from the measurement regions and the defects were analyzed visually from the cross sections. The ultrasound responses were compared with the results of the visual examination of the cross sections. With the additional bias voltage, the ferroelectret measurement showed increased signal-to-noise ratio, which is especially important for air-coupled measurement of high-attenuation materials like wood. When comparing the defect response of GMP and FE sensors, it was found that FE sensors had more sensitive dynamic range, resulting from better s/n ratio and short response pulse. Classification test was made to test the possibility of detecting defects in sound wood. Machine learning methods including decision trees, k-nearest neighbor and support vector machine were used. The classification accuracy varied between 72 and 77% in the tests. All the tested machine learning methods could be used efficiently for the classification. KW - Air-coupled transducers KW - Wood KW - Ultrasound KW - Ultrasonic imaging KW - Ferroelectret KW - Machine learning PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509503 DO - https://doi.org/10.1007/s00226-020-01189-y SP - 1 EP - 14 PB - Springer AN - OPUS4-50950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Imaging wood defects using air coupled ferroelectret ultrasonic transducers in reflection mode JF - Construction and Building Materials N2 - Air-coupled ultrasound (ACU) is used to detect defects in wood panels without physically contacting the sample and with a quick scanning rate. Transducers made of cellular polypropylene (PP) with a high signal-to-noise ratio are quite suitable for ACU testing of wood. The extremely low modulus of elasticity and low density of PP transducers results in a small difference in acoustic impedance for the Transmission of ultrasonic waves between the transducer and air, allowing new areas of application to become possible. To demonstrate the suitability of the reflection technique, measurements are shown on the three samples Multiplex, LVL, and MDF and compared with transmission measurements. Due to this acoustic barrier and the use of cellular PP transducers, an exact detection of delamination and cavities is possible in wood panels up to 40 mm thick. If only one side of an object is accessible and the depth of the defect is of interest, the reflection technique is preferred at the expense of a reduced measuring accuracy and Penetration depth. KW - Wood KW - Ultrasound KW - Air coupled KW - Defects PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.118032 VL - 241 SP - 118032, 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-50235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeipert, H. A1 - Claes, L. A1 - Johannesmann, S. A1 - Lugovtsova, Yevgeniya A1 - Nicolai, Marcel A1 - Prager, Jens A1 - Henning, Bernd ED - Jumar, U. T1 - An approach to adhesive bond characterisation using guided acoustic waves in multi-layered plates JF - at - Automatisierungstechnik N2 - An approach for the non-destructive characterisation of adhesive bonds using guided ultrasonic waves is presented. Pulsed laser radiation is used to thermoacoustically excite broadband ultrasonic waves in a multi-layered sample, consisting of a metal plate adhesively joined to a polymeric layer using synthetic resin. The resulting signals are received by a purpose-built piezoelectric transducer. Varying the distance between excitation and detection yields spatio-temporal measurement data, from which the dispersive properties of the propagating waves can be inferred using a two-dimensional Fourier transform, assuming the plates to act as coupled waveguides. Coupled multi-layered waveguides show an effect referred to as mode repulsion, where the distance between certain modes in the frequency-wavenumber domain is assumed to be a measure of coupling strength. Measurements at different stages of curing of the adhesive layer are performed and evaluated. A comparison of the results shows changes in the dispersive properties, namely an increased modal bandwidth for the fully cured sample as well as an increased modal distance. KW - Adhesive bonding KW - Guided waves KW - Non-destructive testing KW - Ultrasound PY - 2021 DO - https://doi.org/10.1515/auto-2021-0089 VL - 69 IS - 11 SP - 962 EP - 969 PB - De Gruyter CY - Berlin/Boston AN - OPUS4-53762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweitzer, T. A1 - Hörmann, M. A1 - Bühling, Benjamin A1 - Bobusch, B. T1 - Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing JF - Fluids N2 - Air-coupled ultrasonic testing is widely used in the industry for the non-destructive testing of compound materials. It provides a fast and efficient way to inspect large concrete civil infrastructures for damage that might lead to catastrophic failure. Due to the large penetration depths required for concrete structures, the use of traditional piezoelectric transducer requires high power electric systems. In this study, a novel fluidic transducer based on a bistable fluidic amplifier is investigated. Previous experiments have shown that the switching action of the device produces a high-power broadband ultrasonic signal. This study will provide further insight into the switching behaviour of the fluidic switch. Therefore, parametric CFD simulations based on compressible supersonic RANS simulations were performed, varying the inlet pressure and velocity profiles for the control flow. Switching times are analyzed with different methods, and it was found that These are mostly independent of the slope of the velocity profile at the control port. Furthermore, it was found that an inversely proportional relationship exists between flow velocity in the throat and the switching time. The results agree with the theoretical background established by experimental studies that can be found in the literature. KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices KW - Computational fluid dynamics KW - Concrete KW - Bistable fluidic amplifier PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525115 DO - https://doi.org/10.3390/fluids6050171 SN - 2311-5521 VL - 6 IS - 5 SP - 171 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Gardner, S. A1 - Kind, Thomas A1 - Kaiser, R. A1 - Grunwald, Marcel A1 - Yang, G. A1 - Redmer, Bernhard A1 - Waske, Anja A1 - Mielentz, Frank A1 - Effner, Ute A1 - Köpp, Christian A1 - Clarkson, A. A1 - Thompson, F. A1 - Ryan, M. A1 - Mahon, D. T1 - Muon Tomography of the Interior of a Reinforced Concrete Block: First Experimental Proof of Concept JF - Journal of Nondestructive Evaluation N2 - Quality assurance and condition assessment of concrete structures is an important topic world-wide due to the aging infrastructure and increasing traffic demands. Common topics include, but are not limited to, localisation of rebar or tendon ducts, geometrical irregularities, cracks, voids, honeycombing or other flaws. Non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened up new fields of application, such as the investigation of freight containers. Muon imaging also has the potential to fill some of the gaps currently existing in concrete NDT. As a first step towards practical use and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. The data acquisition takes more time and signals contain more noise, but the images allowed to detect the same important features that are visible in conventional high energy X-ray tomography. In our experiment, we have shown that muon imaging has potential for concrete inspection. The next steps include the development of mobile detectors and optimising acquisition and imaging parameters. KW - Concrete KW - Muon KW - Radar KW - Ultrasound KW - X-ray PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529974 DO - https://doi.org/10.1007/s10921-021-00797-3 VL - 40 IS - 3 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-52997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -