TY - GEN A1 - Grotelüschen, Bjarne A1 - Bühling, Benjamin T1 - Impact-Echo Dataset "IE Platte" N2 - This dataset contains raw data resulting from Impact-Echo measurements at the reference concrete block "IE Platte", located at BAM (German Federal Institute for Materials Research and Testing). The specimen contains three polystyrene slabs and one polyethylene foil to act as reflectors. The specimen was produced in a three-step process. First, the base plate was cast. Second, the reflectors were taped to the base plate. Finally, the upper layer was cast on top of base plate and reflectors. A drawing is contained in the dataset. The Impact-Echo method is based on the excitation of the zero-group-velocity frequency of the first symmetric Lamb mode of a plate-like structure, in order to assess its thickness. Numerous publications elaborate on Impact-Echo theory, examples are (Gibson and Popovics 2005, Schubert and Köhler 2008 , Abraham and Popovics 2010). The measurements have been conducted using a setup that contains only commercially available components. The setup consists of an Olson CTG-2 concrete thickness gauge (Olsen Instruments, USA) for actuation and sensing and an 8-bit NI USB-5132 digital storage oscilloscope (National Instruments, USA) combined with the Echolyst software (Schweizerischer Verein für technische Inspektionen (SVTI), Switzerland) for data acquisition. Measurements were conducted using a grid of 29x29 points with a spacing of 50 mm. At each point 8192 samples were recorded at a sampling rate of 1 MS/s. The dataset contains the (X,Y) location in mm of the individual measurement points as well as the raw measurement data at those points. The data is provided in the formats *.mir/*.mhdr (Echolyst), *.npy (Python) and *.mat (Matlab) and *.csv to ease the import in various post-processing tools. KW - Concrete KW - Impact-Echo KW - Nondestructive testing PY - 2022 U6 - https://doi.org/10.7910/DVN/EH4E9G PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-55279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Using a spectral entropy criterion for improved onset picking in ultrasonic testing N2 - In ultrasonic testing, the time of flight (ToF) of a signal can be used to infer material and structural properties of a test item. In dispersive media, extracting the bulk wave velocity from a received signal is challenging as the waveform changes along its path of propagation. When using signal features such as the first peak or the envelope maximum, the calculated velocity changes with the propagation distance. This does not occur when picking the signal onset. Borrowing from seismology, researchers used the Akaike information criterion (AIC) picker to automatically obtain onset times. In addition to being dependent on arbitrarily set parameters, the AIC picker assumes no prior knowledge of the spectral properties of the signal. This is unnecessary in ultrasonic through-transmission testing, where the signal spectrum is known to differ significantly from noise. In this contribution, a novel parameter-free onset picker is proposed, that is based on a spectral entropy criterion (SEC) to model the signal using the AIC framework. Synthetic and experimental data are used to compare the performance of SEC and AIC pickers, showing an improved accuracy for densely sampled data. T2 - 183rd Meeting of the Acoustical Society of America CY - Nashville, TN, USA DA - 05.12.2022 KW - ToF KW - Arrival time KW - Nondestructive testing KW - Through-transmission KW - AIC picker PY - 2022 AN - OPUS4-56616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Aßmann, Norman A1 - Bühling, Benjamin T1 - Impact-echo dataset "Radarplatte" N2 - This dataset contains raw data resulting from Impact-Echo measurements at the reference conrete block "Radarplatte", located at BAM (German Federal Institute for Materials Research and Testing). This specimen has been described in detail by Niederleithinger et al. (2021), who applied muon tomography, ultrasonic echo measurements, radar and X-ray laminography to visualize its internal structure. The Impact-Echo method is based on the excitation of the zero-group-velocity frequency of the first symmetric Lamb mode of a plate-like structure, in order to assess its thickness. Numerous publication elaborate on Impact-Echo theory, examples are (Gibson and Popovics 2005, Schubert and Köhler 2008 , Abraham and Popovics 2010). The measurements have been conducted using a setup that contains only commercially available components. The setup consists of an Olson CTG-2 concrete thickness gauge (Olsen Instruments, USA) for actuation and sensing and an 8-bit NI USB-5132 digital storage oscilloscope (National Instruments, USA) combined with the Echolyst software (Schweizerischer Verein für technische Inspektionen (SVTI), Switzerland) for data acquisition. Measurements were conducted using a grid of 23x23 points with a spacing of 50 mm. At each point 8192 samples were recorded at a sampling rate of 1 MS/s. The dataset contains the (X,Y) location in mm of the individual measurement points as well as the raw measurement data at those points. The data is provided in the formats *.mir/*.mhdr (Echolyst), *.npy (Python) and *.mat (Matlab) and *.csv to ease the import in various post-processing tools. KW - Nondestructive testing KW - Impact-echo KW - S1-ZGV mode KW - Concrete PY - 2021 U6 - https://doi.org/10.7910/DVN/UNOH2U PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-53886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ahmadi, Samim A1 - Kästner, L. A1 - Hauffen, Jan Christian A1 - Jung, P. A1 - Ziegler, Mathias T1 - Photothermal-SR-Net: A Customized Deep Unfolding Neural Network for Photothermal Super Resolution Imaging N2 - This paper presents deep unfolding neural networks to handle inverse problems in photothermal radiometry enabling super resolution (SR) imaging. Photothermal imaging is a well-known technique in active thermography for nondestructive inspection of defects in materials such as metals or composites. A grand challenge of active thermography is to overcome the spatial resolution limitation imposed by heat diffusion in order to accurately resolve each defect. The photothermal SR approach enables to extract high-frequency spatial components based on the deconvolution with the thermal point spread function. However, stable deconvolution can only be achieved by using the sparse structure of defect patterns, which often requires tedious, hand-crafted tuning of hyperparameters and results in computationally intensive algorithms. On this account, Photothermal-SR-Net is proposed in this paper, which performs deconvolution by deep unfolding considering the underlying physics. This enables to super resolve 2D thermal images for nondestructive testing with a substantially improved convergence rate. Since defects appear sparsely in materials, Photothermal-SR-Net applies trained blocksparsity thresholding to the acquired thermal images in each convolutional layer. The performance of the proposed approach is evaluated and discussed using various deep unfolding and thresholding approaches applied to 2D thermal images. Subsequently, studies are conducted on how to increase the reconstruction quality and the computational performance of Photothermal-SR-Net is evaluated. Thereby, it was found that the computing time for creating high-resolution images could be significantly reduced without decreasing the reconstruction quality by using pixel binning as a preprocessing step. KW - Photothermal super resolution KW - Nondestructive testing KW - Deep unfolding KW - Deep learning KW - Deep imaging KW - Physics-based deep learning KW - Laser thermography KW - Elastic net KW - Iterative shrinkage thresholding algorithm PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525371 UR - https://arxiv.org/abs/2104.10563 SN - 2331-8422 SP - 1 EP - 10 PB - Cornell University CY - Ithaca, NY AN - OPUS4-52537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Buildings: Seismology and Strctural Health Monitoring N2 - Overview of seismological concepts unsed in nondestructive testing in civil engineering T2 - Fourth TIDES Advanced Training School CY - Prague, Czech Repubilc DA - 01.07.2018 KW - Geophysics KW - Seismology KW - Interferometry KW - Structural health monitoring KW - Nondestructive testing PY - 2018 AN - OPUS4-45361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terzioglu, T. A1 - Karthik, M. A1 - Hurlebaus, S. A1 - Hueste, M. A1 - Maack, Stefan A1 - Wöstmann, Jens A1 - Wiggenhauser, Herbert A1 - Krause, M. A1 - Miller, P. A1 - Olson, L. T1 - Nondestructive evaluation of grout defects in internal tendons of posttensioned girders N2 - Post-tensioning systems provide safe and efficient construction solutions for long span bridges. Despite the improved grouting practices over the past decade, existing post-tensioning systems may have significant amount of grout defects, which could lead to corrosion of the strands. Condition assessment of post-tensioning systems is necessary to allow bridge owners to take timely, proactive actions to mitigate or prevent further Deterioration and unanticipated tendon failures. A detailed experimental study conducted to assess the performance of nondestructive evaluation techniques in detecting grout defects within internal tendons is presented herein. Nondestructive evaluation techniques that include Ground Penetrating Radar, Impact Echo, Ultrasonic Tomography, and Ultrasonic Echo are evaluated in terms of detecting the location and severity of fabricated grout defects in a full-scale post-tensioned U-girder mock-up specimen. While Ground Penetrating Radar can identify the location and profile of the internal tendons, particularly metal ducts due to strong reflections, this method did not provide any information about the defect conditions within the tendon. Both Impact Echo and Ultrasonic Echo techniques are effective in identifying the Location of grout defects, but could not differentiate between water, void, or compromised grout conditions. The study clearly demonstrates the need for NDE techniques that are applicable to anchorage regions, and that are capable of estimating the severity and nature of grout defects in internal tendons. KW - Zerstörungsfreie Prüfung KW - Nondestructive testing KW - Ground penetrating radar KW - Impact Echo KW - Ultrasonic tomography KW - Ultrasonic echo KW - Bridge inspection PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0963869517305996?via%3Dihub U6 - https://doi.org/10.1016/j.ndteint.2018.05.013 SN - 0963-8695 VL - 99 SP - 23 EP - 35 PB - Elsevier Ltd. AN - OPUS4-45218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jüngert, A. A1 - Dugan, S. A1 - Homann, Tobias A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Pudovikov, S. A1 - Schwender, T. T1 - Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities N2 - Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains which lead on the one hand to high sound scattering and on the other hand – to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts propagate not linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques, which are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique. T2 - 44th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Utah Valley Convention Center, Provo, Utah, USA DA - 15.07.2017 KW - Austenitic stainless steel KW - Nuclear power plants KW - Dissimilar welds KW - Nondestructive testing KW - Ultrasonic testing PY - 2018 SN - 978-0-7354-1644-4 SN - 0094-243X VL - 1949 SP - UNSP 110002, 1 EP - 9 AN - OPUS4-44148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caetano, D. M. A1 - Rabuske, T. A1 - Fernandes, J. A1 - Pelkner, Matthias A1 - Fermon, C. A1 - Cardoso, S. A1 - Ribes, B. A1 - Franco, F. A1 - Paul, J. A1 - Piedade, M. A1 - Freitas, P. P. T1 - High-Resolution Nondestructive Test Probes Based on Magnetoresistive N2 - This paper discloses two high-sensitivity probes for Eddy Current Nondestructive Test (NDT) of buried and surface defects. These probes incorporate eight and 32 magnetoresistive sensors, respectively, which are optimized for high sensitivity and spatial resolution. The signal processing and interfacing are carried out by a full-custom application-specific integrated circuit (ASIC). The ASIC signal chain performs with a thermal input-referred noise of 30 nV/√Hz at 1 kHz, with 66 mW of power consumption, in a die with 3.7 × 3.4 mm 2 . NDT results are presented, showing that there is an increase in spatial resolution of surface defects when contrasted to prior art, enabling the probes to resolve defects with diameters of 0.44 mm, pitches of 0.6 mm, and minimum edge distance as low as 0.16 mm. The results also show that the probe for buried defects is a good all-round tool for detection of defects under cladding and multiple-plate flat junctions. KW - ASIC KW - Magnetoresistive sensor KW - Nondestructive testing KW - Eddy current testing KW - High resolution PY - 2019 U6 - https://doi.org/10.1109/TIE.2018.2879306 VL - 66 IS - 9 SP - 7326 EP - 7337 PB - IEEE AN - OPUS4-48239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaal, Mate A1 - Caldeira, Rui A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Vössing, Konrad A1 - Kupnik, M. T1 - Air-coupled ultrasonic ferroelectret receiver with additional bias voltage N2 - High sensitivity is an important requirement for air-coupled ultrasonic sensors applied to materials testing. With a lower acoustic impedance than any piezoelectric material, charged cellular polypropylene (PP) offers better matching to air with a similar piezoelectric coefficient. The piezoelectric properties of charged cellular PP originate from their polarization, creating permanent internal voltage. The sensitivity of the sensor can be increased by applying additional dc bias voltage, as it has been done already for transmitters. This work presents the first ultrasonic sensor based on charged cellular PP including a high-voltage module providing dc bias voltage up to 2 kV. This bias voltage led to an increase in the signal-to-noise ratio of up to 15 ± 1 dB. The measurement of the received signal depending on the applied bias voltage is proposed as a new method of determining the internal voltage of ferroelectrets. The sensor combined with a cellular PP transmitter was applied to nondestructive testing of a rotor blade segment and glued-laminated timber, enabling imaging of the internal structure of these specimens with a thickness around 4 cm. KW - Acoustic sensors KW - Ferroelectret KW - Nondestructive testing KW - Ultrasonic imaging KW - Ultrasonic transducers PY - 2019 U6 - https://doi.org/10.1109/TUFFC.2019.2925666 SN - 0885-3010 SN - 1525-8955 VL - 66 IS - 10 SP - 1600 EP - 1605 PB - IEEE AN - OPUS4-49131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eckel, S. A1 - Huthwaite, P. A1 - Zscherpel, Uwe A1 - Schumm, A. A1 - Paul, N. T1 - Realistic film noise generation based on experimental noise spectra N2 - Generating 2D noise with local, space-varying spectral characteristics is vital where random noise fields with spatially heterogeneous statistical properties are observed and need to be simulated. A realistic, non-stationary noise generator relying on experimental data is presented. That generator is desired in areas such as photography and radiography. For example, before performing actual X-ray imaging in practice, output images are simulated to assess and improve setups. For that purpose, realistic film noise modelling is crucial because noise downgrades the detectability of visual signals. The presented film noise synthesiser improves the realism and value of radiographic simulations significantly, allowing more realistic assessments of radiographic test setups. The method respects space-varying spectral characteristics and probability distributions, locally simulating noise with realistic granularity and contrast. The benefits of this approach are to respect the correlation between noise and image as well as internal correlation, the fast generation of any number of unique noise samples, the exploitation of real experimental data, and its statistical non-stationarity. The combination of these benefits is not available in existing work. Validation of the new technique was undertaken in the field of industrial radiography. While applied to that field here, the technique is general and can also be utilised in any other field where the generation of 2D noise with local, space-varying statistical properties is necessary. KW - Nondestructive testing KW - Image quality KW - Noise simulation KW - Radiography PY - 2020 U6 - https://doi.org/10.1109/TIP.2019.2955284 SN - 1057-7149 VL - 29 SP - 2987 EP - 2998 PB - IEEE Xplore CY - Washington, D.C. AN - OPUS4-50518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -