TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Reconstruction of Elastic Constants of Isotropic and Anisotropic Materials using Ultrasonic Guided Waves N2 - Acoustic methods are ideally suited for determining the mechanical properties of different materials non-destructively. The availability of such methods is particularly important for fiber-reinforced polymers (FRPs) because their properties strongly depend on the manufacturing process and in-service conditions. Since FRPs are mostly used in thin-walled components, properties can be derived from the dispersion curves of ultrasonic guided waves (UGWs). Our approach is based on an inverse procedure in which the numerically calcu-lated dispersion curves are fitted to the measured curves. The acquisition is done by applying a broadband piezoelectric transducer (PZT) to excite and a 3D laser Doppler vibrometer (3D LDV) to record the waves. Compared to the ap-proaches based on laser excitation, the PZT provides a better signal-to-noise ra-tio because more energy is brought into the structure. Whereas the 3D LDV compared to a 1D LDV or a PZT allows capturing in-plane and out-of-plane components and thus providing more dispersion information. Since the inverse procedure requires many iterations before elastic properties are retrieved, an ef-ficient tool for the calculation of the dispersion curves is necessary. For this, the Scaled Boundary Finite Element Method is used. All in all, a good agreement between theoretical and experimental curves is demonstrated. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Lamb waves KW - Elastic waves KW - Fibre-reinforced polymers KW - Inverse procedure KW - Scaled Boundary Finite Element Method PY - 2022 AN - OPUS4-55236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jurgelucks, B. A1 - Bulling, Jannis A1 - Prager, Jens A1 - Walther, A. T1 - Defect Characterization in Carbon Fiber Reinforced Polymer via Derivative-based Optimization N2 - In recent years carbon über polymers have become a popular light-weight substitute for high-weight materials such as steel. One advantage of carbon fiber polymers is the high strength-to-weight ratio, thus some popular application areas are weight sensitive such as aeronautics or automobiles. As these application areas are especially sensitive to material failure it is of significant interest to characterize material defects which may arise. In this talk we will propose a method to characterize material defects in carbon fiber reinforced polymers using gradient-based optimization methods. The procedure is based on the solution of an inverse problem where simulation data and experimental data is fitted. Here, gradients of the simulation will be supplied by an Algorithmic Differentiation (AD) tool which greatly enhances the quality of the solution. Numerical examples will be provided. T2 - GAMM 2020@21 CY - Online meeting DA - 15.03.2021 KW - Inverse Method KW - Scaled Boundary Finite Element Method KW - Algorithmic Differentiation PY - 2021 AN - OPUS4-52896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Prager, Jens T1 - Quadtree decomposition as a meshing strategy for guided waves simulations using the scaled boundary finite element method N2 - Structural health monitoring techniques associate strongly with damage detection and characterization. Ultrasonic guided waves (UGW), for such scope, arise as one of the most promising methods for many reasons i.e. UGW are able to travel long distances and they have high sensitivity to damage. In this context, the necessity to model realistic wave-defect interaction occurs to be critical. Realistic damage scenarios can be modeled through the usage of image-based quadtree meshes. Images, such as the outcome from X-ray scans, C-scans, etc., can be converted into meshes for further integration in a computational domain. Quadtree meshes are created by converting the intensity of the pixels to quadrilateral cells. Homogeneous regions inside one image result in one quad, whereas fine features such as discontinuities can be described with smaller quads. This contribution proposes an efficient methodology to model wave defect interaction, using as a framework the scaled boundary finite element method (SBFEM) and quadtree meshes. Problems as non-conforming regions in the mesh due to the space tree decomposition can be easily avoided using SBFEM’s polygonal elements. Moreover, the semi-analytical nature of the SBFEM allows the modeling of arbitrarily long prismatic/undamaged regions of the waveguides without an increase in the computational burden. T2 - DAGA 2022 CY - Stuttgart, Germany DA - 21.03.2022 KW - Wave defect interaction KW - Scaled Boundary Finite Element Method KW - Quadtree meshes KW - Image-based models KW - Transient analysis PY - 2022 SP - 887 EP - 890 CY - Stuttgart AN - OPUS4-57153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - Entwicklung eines Ultraschallsenors zur Flüssigkeitsanalyse in Rohrleitungen N2 - Zur Messung von Konzentrationen in Flüssigkeiten können akustische Sensoren genutzt werden. Ziel der vorliegend Arbeit ist es einen Sensor zu entwerfen der sehr hohe Messgenauigkeiten erzielen kann. Der Sensor besteht aus einem rechteckigen Rohr, welches auf einem Halbraum angebracht ist. Die Konzentrationsbestimmung erfolgt anhand des Resonanzverhaltens der Struktur, wodurch eine hohe Messgenauigkeit erreicht werden kann. Um den Sensors zu verwirklichen, muss eine Optimierung der Geometrie mit vielen Iterationsschritten durchlaufen werden. Da keine analytische Beschreibung des akustischen Verhaltens vorliegt, wird eine effiziente Simulationsmethode benötigt. Die Scaled Boundary Finite Element Method (SBFEM) für prismatische Strukturen erscheint für die Simulation geeignet, da Teile der Geometrie ohne neue Vernetzung geändert werden können. Für die Berechnung des Sensors wird ein Modell der akustischen Fluid-Struktur Interaktion benötigt, das bisher nicht vorhanden ist. Die Präsentation behandelt die Implementierung des Fluidmodells in die SBFEM und deren Validierung. Für die Validierung werden die Ergebnisse mit analytischen Beispielen ohne Fluid-Struktur Kopplung und mit Comsol-Ergebnissen der Dispersionskurven mit Wasser gefüllter Rohre verglichen. Schließlich wird das neuartige Verfahren für die Modellierung der Sensorgeometrie angewendet. An einer einfachen Geometrie wird das Sensorprinzip zur Bestimmung der Salzkonzentration demonstriert. T2 - DAGA 2018 - 44. Jahrestagung für Akustik CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Fluid-Structure Interaction PY - 2018 AN - OPUS4-45259 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid-structure interaction in the scaled Boundary finite element method for prismatic Structures N2 - The Scaled Boundary Finite Element Method (SBFEM) for prismatic structures is an efficient method for the simulation of acoustic behavior. Hence a further development of the method is of great interest. The wave propagation can be calculated for isotropic and anisotropic materials in solids. As for many applications the acoustic behavior in fluids and the behavior in case of fluid-structure interaction (FSI) is subject of research, the implementation of a fluid model in SBFEM for prismatic structures is needed. In case of FSI the coupling between fluid and solid domains can be performed without additional effort when describing both domains in the same variables. Hence a displacement-based fluid description is used. As the discretized formulation leads to spurious modes, a penalty method to suppress the unphysical behavior is chosen. To validate the derived model a comparison with analytical solutions of purely fluid domains is made. As to verify that in case of FSI the model shows the right behavior, dispersion curves of water-filled pipes are calculated and compared to results obtained with Comsol. T2 - 89th GAMM Annual Meeting CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Fluid-Structure Interaction KW - Penalty Parameter PY - 2018 AN - OPUS4-45260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - Entwicklung eines Ultraschallsensors zur Flüssigkeitsanalyse in Rohrleitungen N2 - Zur Messung von Konzentrationen in Flüssigkeiten können akustische Sensoren genutzt werden. Ziel der vorliegend Arbeit ist es einen Sensor zu entwerfen der sehr hohe Messgenauigkeiten erzielen kann. Der Sensor besteht aus einem rechteckigen Rohr, welches auf einem Halbraum angebracht ist. Die Konzentrationsbestimmung erfolgt anhand des Resonanzverhaltens der Struktur, wodurch eine hohe Messgenauigkeit erreicht werden kann. Um den Sensors zu verwirklichen, muss eine Optimierung der Geometrie mit vielen Iterationsschritten durchlaufen werden. Da keine analytische Beschreibung des akustischen Verhaltens vorliegt, wird eine effiziente Simulationsmethode benötigt. Die Scaled Boundary Finite Element Method (SBFEM) für prismatische Strukturen erscheint für die Simulation geeignet, da Teile der Geometrie ohne neue Vernetzung geändert werden können. Für die Berechnung des Sensors wird ein Modell der akustischen Fluid-Struktur Interaktion benötigt, das bisher nicht vorhanden ist. Die Präsentation behandelt die Implementierung des Fluidmodells in die SBFEM und deren Validierung. Für die Validierung werden die Ergebnisse mit analytischen Beispielen ohne Fluid-Struktur Kopplung und mit Comsol-Ergebnissen der Dispersionskurven mit Wasser gefüllter Rohre verglichen. Schließlich wird das neuartige Verfahren für die Modellierung der Sensorgeometrie angewendet. An einer einfachen Geometrie wird das Sensorprinzip zur Bestimmung der Salzkonzentration demonstriert. T2 - DAGA 2018 - 44. Jahrestagung für Akustik CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Sensorentwicklung PY - 2018 SN - 978-3-939296-13-3 VL - 2018 SP - 1023 EP - 1026 AN - OPUS4-45262 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Prager, Jens T1 - Acoustic-structure interaction in the scaled boundary finite element method for primsatic geometries N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Acoustic-structure interaction PY - 2019 AN - OPUS4-48846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Fantastic guided modes and how to find them N2 - Ultrasonic guided waves (UGW) have been shown to be suitable for non-destructive testing (NDT) and structural health monitoring (SHM) of many engineering structures. Development of a technique based on UGWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to their dispersion and multimodal character. This presentation will provide insights into the Scaled Boundary Finite Element Method and its applicability for tackling wave propagation problems. Features and limitations of the SBFEM will be presented on an example of a multi-layered plate structure consisting of isotropic and anisotropic materials bonded together. You will be guided through the process of picking up the wave modes for your application. Starting from the calculation of dispersion curves and mode shapes to the analysis of wave propagation and mode-damage interaction. The main highlight of the presentation lies in the ability to detect damage in a certain layer depending on the mode used. The resulting deeper understanding of the wave propagation in multi-layered structures is the key to further developments of NDT and SHM for engineering structures consisting of multiple layers. T2 - Von CEA Eingeladener Vortrag CY - Saclay, France DA - 07.06.2019 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Natural gas KW - Composites KW - Scaled Boundary Finite Element Method PY - 2019 AN - OPUS4-48375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Prager, Jens T1 - Acoustic-structure interaction in the Scaled Boundary Finite Element Method for primsatic geometries T2 - 8th GACM Colloquium on Computational Mechanics for Young Scientist from Academia and Industry - Proceedings N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Ultrasound KW - Acoustic-Structure Interaction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497364 UR - https://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-5093-9 SN - 978-3-86219-5093-9 DO - https://doi.org/10.19211/KUP9783737650939 SP - 347 EP - 350 AN - OPUS4-49736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid‐structure interaction in the Scaled Boundary Finite Element Method for prismatic structures JF - Proceedings in applied mathematics and mechanics : PAMM N2 - The Scaled Boundary Finite Element Method is known as an efficient method for the simulation of ultrasonic wave propagation. As to investigate acoustic wave behavior in case of fluid‐structure interaction, a fluid model is implemented in the SBFEM for prismatic structures. To omit coupling terms a displacement‐based formulation is used. Spurious modes, which occur in the solution, are suppressed using a penalty parameter. To verify this formulation dispersion curves obtained with Comsol Multiphysics are compared to results of SBFEM. The results of both methods are in very good agreement T2 - GAMM 2018 CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Fluid-Structure Interaction KW - Guided Waves PY - 2018 DO - https://doi.org/10.1002/pamm.201800139 VL - 18 IS - 1 SP - e201800139 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-47063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -