TY - CONF A1 - Zeipert, H. A1 - Claes, L. A1 - Johannesmann, S. A1 - Webersen, M. A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens A1 - Henning, B. T1 - Measurement and simulation of Lamb waves in adhesive-bonded multilayer systems T2 - SMSI 2021 - Measurement Science N2 - Lamb waves are a common tool in the field of non-destructive testing and are widely used for materialcharacterisation. Further, the increasing computational capability of modern systems enables the Simulation of complex and detailed material models. This work demonstrates the possibility of simulating an adhesive-bonded multilayer system by characterising each layer individually, and introduces an Approach for determining the dispersive behaviour of acoustic waves in a multilayer system via real measurements. T2 - SMSI 2021 Conference – Sensor and Measurement Science International CY - Online meeting DA - 03.05.2021 KW - Adhesive bonds KW - Lamb waves KW - Elastic constants KW - Non-Destructive Testing KW - Ultrasound PY - 2021 DO - https://doi.org/10.5162/SMSI2021/A8.2 SP - 91 EP - 92 AN - OPUS4-52634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brence, Blaž A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Interdigital Transducers for Structural Health Monitoring T2 - Tagungsband der 48. Jahrestagung für Akustik (DAGA) N2 - Interdigital transducers (IDTs) are a well-known tool for excitation of surface acoustic waves. The use of IDTs is versatile, but they are most commonly employed as actuators for excitation of ultrasonic guided waves (UGWs). However, they are still a relatively new technology, which leaves many possibilities for future research, especially in the scope of newly emerging structural health monitoring (SHM) systems. IDTs offer low weight, design flexibility and beam directivity, which make them ideal candidates for employment in such systems. Due to the IDTs’ and waves’ complexity, problems often cannot be described analytically, therefore they require numerical solutions and experimental validations. In this contribution, a novel, simple use of IDTs, in the scope of SHM is described. Firstly, numerical findings acquired with finite element method are presented. To validate those results, experiments in a plate-like waveguide are carried out. A good agreement between them is found. The results show the potential of the IDTs in yet another prospective application, which could be attractive for adoption in the future. T2 - 48. Jahrestagung für Akustik (DAGA) CY - Stuttgart, Germany DA - 21.03.2022 KW - Lamb waves KW - Ultrasonic Guided Waves KW - Selective excitation PY - 2022 SP - 221 EP - 224 AN - OPUS4-55501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulletti, A. A1 - Giannelli, P. A1 - Capineri, L. A1 - Prager, Jens T1 - Characterization of a Flexible Piezopolymer-based Interdigital Transducer for Selective Excitation of Ultrasonic Guided Waves T2 - Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS) N2 - Structural health monitoring (SHM) is a term that groups together techniques adopted to evaluate in a continued fashion the structural integrity and degradation of technical appliances. SHM is particularly attractive for components that are difficult to access or expensive to take off-line. Among many other techniques, SHM can be performed using ultrasonic guided waves (UGW) which have an advantage of traveling over Long distances. Various guided wave modes exist along with many methods for their generation and sensing, e.g by means of interdigital transducers (IDT). This contribution is dedicated to the design and characterization of a flexible piezopolymerbased IDT which allows for the selective excitation of UGW, resulting in more straightforward data analysis. The designed IDT was characterized using a 3D Laser Doppler Vibrometer (3D LDV) in the air to identify and analyze the IDT’s Vibration modes. Then the transducer was mounted on an aluminum plate, and the generated wavefield was measured with the 3D LDV. According to this investigation, we demonstrate that it is possible to selectively excite desired guided wave mode, namely the A0 mode, suppressing the excitation of the S0 mode. Moreover, the measured wavefield allows for analysis of the directivity of the designed IDT. All in all the results show good correlation between theoretical predictions and measured values, thus allowing to use the current design in terms of selective excitation as it is. T2 - I2020 IEEE International Ultrasonics Symposium (IUS) CY - Online meeting DA - 07.09.2020 KW - Lamb waves KW - Non-Destructive Testing KW - Structural Health Monitoring KW - Polyvinylidene Fluoride (PVDF) PY - 2020 SN - 978-1-7281-5448-0 SP - 1261, 45 AN - OPUS4-51441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Johannesmann, S. A1 - Henning, B. A1 - Prager, Jens T1 - Analysis of Lamb wave mode repulsion and its implications to the characterisation of adhesive bonding strength T2 - Proceedings of International Congress on Ultrasonics N2 - Lamb waves are widely used for non-destructive evaluation of material parameters as well as for detection of defects. Another application of Lamb waves is quality control of adhesive joints. Researchers are currently investigating shear horizontal and zero-group velocity modes for characterisation of the adhesive bonding strength. In a new approach, Lamb wave mode repulsion is used to obtain the coupling strength between different layers to characterise the adhesive bonding strength. The modes of the individual layers become coupled in the multilayered systems forming particular regions, the so-called mode repulsion regions. This study investigates these modes and their interaction in two-layered plate-like structures with varying coupling strength both numerically, with the Scaled Boundary FEM, and experimentally T2 - International Congress on Ultrasonics CY - Bruges, Belgium DA - 03.09.2019 KW - Lamb waves KW - Multi-layered system KW - Adhesive joint KW - Mechanical strength KW - Scaled Boundary FEM PY - 2019 SP - 1 EP - 4 AN - OPUS4-48911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Mesnil, Olivier A1 - Bulling, Jannis A1 - Prager, Jens A1 - Boller, C. T1 - Damage Quantification in Aluminium-CFRP Composite Structures using Guided Wave Wavenumber Mapping T2 - Proceedings of the 11th International Symposium on NDT in Aerospace N2 - The use of composite materials is associated not only with the advantages of weight reduction and improved structural performance but also with the risk of barely visible impacts or manufacturing damages. One of the promising techniques for the detection and characterisation of such damages is based on ultrasonic guided wave propagation and analysis. However, the multimodal nature and dispersive behaviour of these waves make their analysis difficult. Various signal processing techniques have been proposed for easier interpretation of guided wave signals and extraction of the necessary information about the damage. One of them is the wavenumber mapping which consists of creating a cartography of the wavenumber of a propagating mode over an inspected area, using a dense wavefield acquisition measured for example with a scanning laser Doppler vibrometer. This technique allows both the quantification of the in-plane size and the depth of damage, for example, impact-induced delamination in composite laminates. In this contribution, wavenumber mapping is applied to a delaminated aluminium-CFRP composite structure which corresponds to composite-overwrapped pressure vessels used for storing gases in aerospace and automotive industries. The analysis of experimental data obtained from measurements of guided waves propagating in an aluminium-CFRP composite plate with impact-induced damage is performed. The output of the imaging is a three-dimensional representation of the delamination induced by the impact. Good agreement between conventional ultrasonic testing and guided wave damage mapping can be found. T2 - 11th International Symposium on NDT in Aerospace CY - Paris Saclay, France DA - 13.11.2019 KW - Damage assessment KW - Lamb waves KW - Multilayered structures KW - Wavefield analysis KW - Impact damage PY - 2019 SP - 33 AN - OPUS4-49663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -