TY - CONF A1 - Kotschate, Daniel A1 - Gaal, Mate A1 - Kersten, H. T1 - Untersuchung der akustischen Eigenschaften von Plasmalautsprechern auf Basis einer dielektrischen gehemmten Oberflächenentladung (SDBD) N2 - Analog zu Blitz und Donner können elektrische Entladungen innerhalb eines Gasvolumens als akustische Quellen agieren und haben daher eine starke Verbreitung als diagnostische Methode (bspw. in der Raumakustik und bei der Ortung von Teilentladungen). Diese auf dem Prinzip der Thermoakustik beruhende Möglichkeit der Schallerzeugung und die damit verbundenen physikalischen Wechselwirkungen machen die Notwendigkeit einer mechanisch ausgelenkten Membran überflüssig. Dabei wird dem hochfrequenten Träger das Nutzsignal aufgeprägt, welches eine Volumenänderung des umliegenden Gases um seinen Ruhezustand verursacht. Durch die somit hervorgerufene zyklische thermische Wechselwirkung mit dem umliegenden Gasgemisch bedarf es daher ebenfalls keiner akustischen Anpassung. In den vorgestellten Ergebnissen wurde das Übertragungsverhalten eines Oberflächenplasmas (SDBD, surface dielectric barrier discharge) untersucht. Als Maß für den Wirkungsgrad und das Übertragungsverhalten des Aktuators wurden Klirrfaktor- und THD- Messungen und unter Variation der Eingangsleistungen durchgeführt. Durch die positiven akustischen Eigenschaften eröffnen sich neue Applikationen für den Einsatz von Plasmahochtönern wie bspw. zerstörungsfreie Werkstoffprüfung von Verbundsystemen und Klebeverbindungen im Automobilsektor oder im Bauwesen. T2 - 44. Jahrestagung für Akustik (DAGA 2018) CY - Munich, Germany DA - 19.03.2018 KW - Gas discharges KW - Atmospheric pressure plasma KW - Surface dielectric barrier discharge KW - Plasma speaker PY - 2018 SN - 978-3-939296-13-3 SP - 555 EP - 558 AN - OPUS4-44812 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotschate, Daniel A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustic emission by self-organising effects of micro-hollow cathode discharges N2 - We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investi-gated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well. KW - Micro hollow cathode discharge KW - Atmospheric pressure plasma KW - Gas discharges KW - Plasma acoustics PY - 2018 U6 - https://doi.org/10.1063/1.5024459 SN - 0003-6951 VL - 112 IS - 15 SP - Article 154102, 1 EP - 4 PB - AIP Publishing AN - OPUS4-44659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Kersten, H. A1 - Glaus, Reto A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Characterization of an airborne laser-spark ion source for ambient mass spectrometry N2 - An airborne laser plasma is suggested as an ambient ion source for mass spectrometry. Its fundamental physical properties, such as an excellent spatial and temporal definition, high electron and ion densities and a high effective cross section in maintaining the plasma, make it a promising candidate for future applications. For deeper insights into the plasma properties, the optical plasma emission is examined and compared to mass spectra. The results show a seemingly contradictory behavior, since the emitted light reports the plasma to almost entirely consist of hot elemental ions, while the corresponding mass spectra exhibit the formation of intact molecular species. Further experiments, including time- resolved shadowgraphy, spatially resolved mass spectrometry, as well as flow-dependent emission spectroscopy and mass spectrometry, suggest the analyte molecules to be formed in the cold plasma vicinity upon interaction with reactive species formed inside the hot plasma center. Spatial separation is maintained by concentrically expanding pressure waves, inducing a strong unidirectional diffusion. The accompanying rarefaction inside the plasma center can be compensated by a gas stream application. This replenishing results in a strong increase in emission brightness, in local reactive species concentration, and eventually in direct mass spectrometric sensitivity. To determine the analytical performance of the new technique, a comparison with an atmospheric pressure chemical ionization (APCI) source was conducted. Two kitchen herbs, namely, spearmint and basil, were analyzed without any sample pretreatment. The presented results demonstrate a considerably higher sensitivity of the presented laser-spark ionization technique. KW - Laser-spark KW - Laser induced plasma KW - Ambient mass spectrometry KW - Optical emission spectroscopy KW - Ionization PY - 2017 U6 - https://doi.org/10.1021/acs.analchem.6b04178 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 6 SP - 3437 EP - 3444 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-39474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -