TY - CONF A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine T1 - “Ultima Ratio”: Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. T2 - Shapespyer/MuSSIC launch workshop CY - Didcot, UK DA - 20.02.2023 KW - X-ray scattering KW - Simulation KW - Fourier Transform KW - 3D KW - High resolution KW - Multi-scale PY - 2023 AN - OPUS4-57031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - "Ultima Ratio": Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. The preprint documenting this is available on the ArXiv here: https://doi.org/10.48550/arXiv.2303.13435 The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045 KW - Video KW - Simulation KW - High-resolution KW - Fourier Transform KW - 3D FFT KW - Nanomaterial KW - Metal organic framework KW - MOF KW - SAXS KW - XRD KW - PDF KW - X-ray diffraction KW - Pair distribution function KW - Small-angle X-ray scattering PY - 2023 UR - https://www.youtube.com/watch?v=lEApkOqR5e8 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-57212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - Jupyter notebook and VASP calculation details accompanying the manuscript: "Ultima Ratio: Simulating wide-range X-ray scattering and diffraction" N2 - ## Summary: This notebook and associated datasets (including VASP details) accompany a manuscript available on the ArXiv (https://doi.org/10.48550/arXiv.2303.13435) and hopefully soon in a journal as short communication as well. Most of the details needed to understand this notebook are explained in that paper with the same title as above. For convenience, the abstract is repeated here: ## Paper abstract: We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is presented coupled to the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The ``Ultima Ratio'' strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from $Q<0.01$\,$\mathrm{nm}^{-1}$ up to $Q\approx150$\,$\mathrm{nm}^{-1}$, with a resolution of 0.16\,\AA. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to $8000^3$ voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-$Q$ behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - Scattering KW - MOUSE KW - Nanomaterials KW - XRD KW - SAXS KW - PDF KW - total scattering KW - 3D Fourier Transform KW - High Resolution KW - FFT PY - 2023 UR - https://doi.org/10.48550/arXiv.2303.13435 DO - https://doi.org/10.5281/zenodo.7764044 PB - Zenodo CY - Geneva AN - OPUS4-57207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - "Ultima Ratio": Simulating wide-range X-ray scattering and diffraction T2 - ArXiv N2 - We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is on the same scale as the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The "Ultima Ratio" strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from Q < 0.01 1/nm up to Q < 150 1/nm, with a resolution of 0.16 Angstrom. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to 8000^3 voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-Q behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - 3D Fourier Transform KW - High resolution KW - XRD KW - SAXS KW - PDF KW - Total scattering KW - X-ray scattering KW - Metal organic framework KW - Electron density map KW - FFT PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572067 DO - https://doi.org/10.48550/arXiv.2303.13435 VL - Cornell University SP - 1 EP - 12 PB - Ithaca, NY AN - OPUS4-57206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -