TY - JOUR A1 - Maiwald, Michael T1 - Die Technologie-Roadmap „Prozess-Sensoren 4.0“ – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle JF - ATP Plus - Das Magazin der Automatisierungstechnik N2 - Die auf der NAMUR HS 2015 vorgestellte Technologie-Roadmap „Prozess-Sensoren 4.0“ zeigt die nötigen Anforderungen an Prozess-Sensoren sowie an deren Kommunikations-fähigkeiten auf. Eine Topologie für smarte Sensoren, das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik sowie weitere Anforderungen an Sensoren sind heute noch nicht angemessen beschrieben. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Sensoren auf Basis eines einheitlichen Protokolls zu kommen, welches alle Sensoren ausgeben und verstehen. KW - Prozess-Sensoren KW - Prozess-Sensoren 4.0 KW - Industrie 4.0 KW - OPC UA KW - Prozessanalytik KW - Prozessindustrie KW - Automatisierung PY - 2016 UR - https://www.di-verlag.de/de/atp-plus-Smart-Sensors SN - 2510-3911 VL - 01 IS - 1 SP - 12 EP - 21 PB - DIV Deutscher Industrieverlag GmbH CY - München AN - OPUS4-38229 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Meyer, Klas A1 - Maiwald, Michael T1 - NMR-Spektroskopie im Feld - Eine neue Online-Methode für die Prozesskontrolle JF - ATP-Edition (Automatisierungstechnische Praxis) N2 - Flexible, modulare Produktionsanlagen auf der Basis von verfahrenstechnischen Teilmodulen stellen einen vielversprechenden Ansatz für die kontinuierliche Produktion von Fein- und Spezialchemikalien dar. Der Schwerpunkt des Horizont-2020-Projekts der Europäischen Kommission CONSENS (Integrated Control and Sensing) liegt in der Implementierung von innovativen Sensorkonzepten zur Prozessüberwachung und -regelung innerhalb von containerbasierten modularen Produktionsan lagen. In diesem Artikel wird die Feldintegration eines Online-NMR-Sensors als smartes Modul für die Prozesskontrolle beschrieben. Dieses Modul basiert auf einem kommerziell erhältlichen Niederfeld-NMRSpektrometer, das zurzeit für die Anwendung im Laborbereich erhältlich ist. Für die Feldintegration wurde ein ATEX-zertifiziertes, explosionsgeschütztes Gehäuse entwickelt sowie Automationsschemen für den unbeaufsichtigten Betrieb und für die spektrale Datenauswertung erstellt. Nachdem die Machbarkeit und Leistungsfähigkeit des Sensorkonzeptes in Laborexperimente an einer aromatischen Substitutionsreaktion bereits erfolgreich demonstriert wurde, ist die Inbetriebnahme des NMR-Sensormoduls in industrieller Umgebung für 2017 geplant. KW - Prozessanalytik KW - Reaction monitoring KW - Industrie 4.0 KW - Online-NMR-Spektroskopie KW - CONSENS KW - Prozess-Sensoren PY - 2016 SN - 2190-4111 VL - 58 IS - 12 SP - 21 EP - 25 PB - DIV Deutscher Industrieverlag GmbH CY - München AN - OPUS4-38675 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Industrie 4.0 aus Sicht der NAMUR - Die Technologie-Roadmap "Prozess-Sensoren 4.0" und danach ... N2 - Es wurde die Anforderungen an die Kommunikatoion von Analysengeräten für eine zukünftige Topologie nach Industrie 4.0 gemeinsam mit dem ZVEI-Arbeitskreis "Kommunikationstechnik für Analysatoren" (KfA) diskutiert. Ziel des Arbeitskreises ist es, kommunikationstechnische Trends für Prozess-Analysengeräte zu beobachten und zu bewerten. Im Bedarfsfall hat dieser Arbeitskreis die Aufgabe, Analysatoren für neue Kommunikationstechniken tauglich zu machen und die dafür notwendige Anschlusstechnik (inkl. Hardware-Interface und Software) zu entwickeln. Die Arbeiten werden in der Regel im Rahmen eines Firmenkonsortiums in gemeinschaftlichen Entwicklungsprojekten durchgeführt. Eine enge Zusammenarbeit mit verschiedenen Bus-Nutzerorganisationen mit der VDI/VDE-Gesellschaft Mess- und Automati-sierungstechnik (GMA)und mit der Interessengemeinschaft Prozessleittechnik der chemischen und pharmazeutischen Industrie (NAMUR) ist hierfür Grundvoraussetzung. T2 - Kolloquium des ZVEI-Arbeitskreises "Kommunikationstechnik für Analysatoren" CY - Reute, Germany DA - 17.11.2016 KW - Industrie 4.0 KW - ZVEI KW - Kommunikation für Analysengeräte KW - Kommunikation KW - Prozessanalytik KW - Prozess-Sensoren PY - 2016 AN - OPUS4-38358 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie auf Basis von „Prozess-Sensoren 4.0“ und Modularisierung N2 - Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie bestehen recht ähnliche Szenarien. Dazu werden derzeit mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Es gibt viele Parallelen zwischen der Laborgerätewelt und der Prozess-Sensor-Welt, die im Rahmen der Digitalisierung immer näher aneinanderrücken. T2 - SPECTARIS e.V., 3. Treffen Projektgruppe Schnittstellen CY - Berlin, Germany DA - 14.06.2017 KW - Prozess-Sensoren KW - Industrie 4.0 KW - SPECTARIS KW - OPC-UA KW - Automation KW - Smarte Sensoren PY - 2017 AN - OPUS4-40598 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Steinmüller, D A1 - Gerlach, M T1 - Wandel der Prozessanalytik vom Exot zur Informationsquelle der digitalisierten Automation N2 - Die ehemals wegen komplexer Technik und vergleichsweise hohen Wartungskosten beim Anwender ungeliebte Prozessanalysentechnik (PAT) erfährt sich mittlerweile immer mehr als etablierender Bereich mit einem großen Zuwachs und Dynamik. Die Prozesskontrolle und -steuerung über physikalische Kenngrößen wie Druck und Temperatur lässt eine weitere Optimierung der Anlagen kaum mehr zu. Nur mittels stoffspezifischer Analysen lassen sich Rohstoffschwankungen, Ausbeuten und Energieeinsatz konsequent optimieren. Der systematische Einsatz der Prozessanalysentechnik verändert Prozesse und Produktionsumgebungen und hat damit die Chance, Kernstück dezentral automatisierter Produktionseinheiten zu werden. Ein neuer Arbeitskreis der NAMUR AK 3.7 „Smarte Sensorik, Aktorik und Kommunikation“ wird diesem verstärkt Rechnung tragen. Es werden reale Anwendungsbeispiele aufgezeigt, die eine schnelle Amortisation von PAT im Prozess untermauern. T2 - ACHEMA 2018 - AUTOMATION IM DIALOG CY - Frankfurt a. M., Germany DA - 11.06.2018 KW - Prozessanalytik KW - Automation KW - Industrie 4.0 KW - Prozessanalysentechnik KW - NAMUR KW - ZVEI PY - 2018 AN - OPUS4-45193 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. Industry 4.0, IIoT, or Lab 4.0 will enable us to handle more complex processes in shorter time. Intensified production concepts require for adaptive analytical instruments and control technology to realize short set-up times, modular control strategies. They are based on a digitized Laboratory 4.0. T2 - GA-Conference CY - BASF, Ludwigshafen, Germany DA - 16.05.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Industrie 4.0 KW - Indirect Hard Modeling KW - Laboratory 4.0 KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Innovationen in der Prozessanalytik – Welches sind die neuen Herausforderungen? N2 - Der Vortrag stellt die aktuellen Forschungsschwerpunkte zum Thema Prozessanalytik an der Bundesanstalt für Materialforschung und -prüfung (BAM) vor und nennt aktuelle Entwicklungsfelder mit dem Ziel gemeinsamer F&E-Projekte. Zunächst wird die Prozessindustrie und ihre Wertschöpfungskette vorgestellt. Daraus ergibt sich eine Motivation für Prozessanalytik. Zwischen der Prozessanalytik in der Pharmazeutische Industrie und der Chemischen Industrie bzw. Verfahrenstechnik gibt es Unterschiede, die herausgearbeitet werden. Der Vortrag schließt mit Technologiewünschen und Technologievisionen und nennt Konkrete Beispiele für Visionen für PAT, insbesondere im Kontext des Zukunftsprojekts „Industrie 4.0“ T2 - Innovationen entwickeln – Von der Idee bis zum Projektstart CY - Göttingen, Germany DA - 11.12.2014 KW - Prozessanalytik KW - Prozessindustrie KW - Innovationen KW - Pharmazeutische Industrie KW - Technologiewünsche KW - Technologievisionen KW - Industrie 4.0 PY - 2014 AN - OPUS4-36146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Forschung und Entwicklung für Prozessanalytik und Automatisierung in der Prozessindustrie N2 - Neue Prozess-Sensoren für neue Produktionskonzepte. Wie entsteht Innovation? Forschungsimpulse aus der Technologie-Roadmap „Prozess-Sensoren 2015+“. Herausforderungen durch das Zukunftsprojekt „Industrie 4.0“. Technologie-Roadmap „Prozess-Sensoren 4.0“ T2 - ACHEMA 2015: Automation im Dialog – Meet the experts CY - Frankfurt a. M., Germany DA - 15.06.2015 KW - Industrie 4.0 KW - Smart Sensors KW - Smarte Sensoren KW - Process Analytical Technology KW - Prozessanalytik PY - 2015 AN - OPUS4-36142 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael ED - Pinnow, C. J. ED - Schäfer, S. T1 - "Prozess‐Sensoren 4.0" – Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie T2 - Industrie 4.0 - Safety und Security - Mit Sicherheit gut vernetzt - Branchentreff der Berliner und Brandenburger Wissenschaft und Industrie N2 - Prozess-Sensoren 4.0 vereinfachen ihre Einbindung über Plug and Play, obwohl sie komplexer werden. Sie bieten Selbstdiagnose, Selbstkalibrierung und erleichterte Parametrierung. Über die Konnektivität ermöglichen die Prozess-Sensoren den Austausch ihrer Informationen als Cyber-physische Systeme mit anderen Prozess-Sensoren und im Netzwerk. Der Aufbruch von der aktuellen Automation zum smarten Sensor hat bereits begonnen. Automatisierungstechnik und Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Wenn die Prozessindustrie dieses nicht definiert, tun es andere. Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie werden mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Eine Topologie für smarte Sensoren, das Zusammenwirken mit daten- und modellbasierte Steuerungen bis hin zur Softsensorik sowie weitere Anforderungen an Sensoren sind jedoch heute noch nicht angemessen beschrieben. Wir müssen jetzt schnell die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen, um zu einer störungsfreien Kommunikation aller Sensoren auf Basis eines einheitlichen Protokolls zu kommen, welches alle Sensoren ausgeben und verstehen. Aktuelle und zukünftige öffentliche Förderung von Industrie 4.0-Projekten sind eine gute Investition. Wegen der hohen Komplexität und Interdisziplinarität gelingt die Umsetzung nur gemeinsam zwischen Anwendern aus der Prozessindustrie, Software- und Geräteherstellern und Forschungsgruppen. Anwender sind gefragt, diese neue Technologie durch eine beschleunigte Validierung und Akzeptanz umzusetzen. Sie erhalten die einzigartige Chance, ihre Prozesse und Anlagen wettbewerbsfähig zu halten. Kooperativ betriebenen F&E-Zentren und gemeinsam anerkannten Applikationslaboren kommt dafür eine hohe Bedeutung zu. T2 - Tagung Industrie 4.0 - "Safety und Security - Mit Sicherheit gut vernetzt", Hochschule für Technik und Wirtschaft CY - Berlin, Germany DA - 28.04.2017 KW - Prozessanalytik KW - Online-NMR-Spektroscopie KW - Industrie 4.0 KW - Automatisierung KW - Prozessindustrie KW - Smarte Sensoren KW - Sensoren PY - 2017 SN - 978-3-410-26406-4 SP - 135 EP - 150 PB - Beuth CY - Berlin AN - OPUS4-43436 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Wozny, G. T1 - Prozess-Spektroskopie in Mikroemulsionen für das Online-Monitoring einer homogenen Hydroformylierungsanlage N2 - Homogen katalysierte Reaktionsschritte sind ein wichtiges Werkzeug in der chemischen Industrie. Durch die milden Reaktionsbedingungen hinsichtlich Temperatur und Druck bei gleichzeitig hoher Selektivität bieten diese die Möglichkeit energieeffizienter und ressourcenschonender Produktionsschritte. Eine der wichtigsten industriellen Anwendungen bildet die Hydroformylierung. Hier besteht das Katalysatorsystem meist aus Übergangsmetallkomplexen, vorwiegend Kobalt und Rhodium, die zur Steuerung der Selektivität und Löslichkeit mit mehrzähnigen Liganden koordiniert sind. Diese Komplexe liegen für eine effiziente Katalysator-rückführung in wässriger Lösung vor, was jedoch die Anwendbarkeit auf kurzkettige Edukte mit hinreichender Wasserlöslichkeit beschränkt. Ein möglicher Lösungsansatz für die Verwendung langkettiger Alkene ist die Umsetzung der Reaktion in einer Mikroemulsion. Durch die gesteigerte Phasen-grenzfläche besteht ein effektiver Kontakt von Katalysator und Reaktanden bei gleichzeitiger Möglichkeit der Produktseparation durch Phasentrennung, während der Katalysator dem Reaktionsschritt zurückgeführt wird und das Verfahren damit wirtschaftlich macht. Am Beispiel der Reaktion von 1-Dodecen zu Tridecanal wird der Einsatz von Online-NMR- und -Raman-Spektroskopie für die Prozessanalytik (sowie Applikation von komplexen Regelungskonzepten) innerhalb eines mizellaren Systems demonstriert. Ein speziell konzipierter Laboraufbau ermöglicht die Durchführung von Experimenten unter Prozessbedingungen für die in Mikroemulsionen äußerst anspruchsvolle Entwicklung und Kalibrierung von multivariaten Modellen für die Raman-Spektroskopie. Diese konnten anschließend im Rahmen einer mehrtägigen Betriebs-studie einer Miniplant am realen technischen System erprobt werden. T2 - Bruker Optics Anwendertreffen 2017 CY - Ettlingen, Germany DA - 07.11.2017 KW - Prozessanalytik KW - Reaktionsmonitoring KW - Industrie 4.0 KW - Online-Raman-Spektroskopie KW - Online-NMR-Spektroskopie KW - Hydroformylierung KW - Mikroemulsionen PY - 2017 AN - OPUS4-42753 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -