TY - CHAP A1 - Theiner, S. A1 - Corte Rodriguez, M. A1 - Traub, Heike ED - Golloch, A. T1 - Novel applications of lanthanoids as analytical or diagnostic tools in the life sciences by ICP-MS based techniques N2 - Inductively coupled plasma-mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element analysis. ICP-MS has found acceptance in various application areas ranging from material analysis to applications in the life sciences. Within the last 15 years new strategies for the sensitive detection and accurate quantification of biomolecules in complex biomedical samples have been developed. Recent instrumental improvements have contributed to this progress. As most of the biomolecules do not contain endogenous metals etectable with ICP-MS, bioconjugation with artificial metal-containing tags based on metal-loaded chelate complexes or nanoparticles is increasingly applied to determine biomolecules indirectly. Especially, the combination of immunohistochemical workflows using lanthanoid-tagged antibodies and ICP-MS detection provides new insights in the complexity and interdependency of cellular processes. Single-cell ICP-MS, also termed as mass cytometry, allows high-dimensional analysis of biomarkers in cell populations at single-cell resolution. For that purpose, lanthanoid isotope labelled antibodies are used to detect their corresponding target molecules. The visualisation of the elemental distribution is possible with laser ablation ICP-MS (LA-ICPMS) at high spatial resolution. Especially, the combination of LA with ICP time-of-flight mass spectrometry, also referred to as imaging mass cytometry (IMC), opens new possibilities for multiparametric tissue imaging at the single-cell level and even below. The lanthanoid localisation and concentration can be linked to their conjugated antibody target providing valuable information about surface markers, intracellular signalling molecules to measure biological function, and the network state of an individual cell in a tissue. This book chapter focuses on new applications, where the multi-element capabilities of ICP-MS are used for the detection of lanthanoids applied as artificial elemental stains or tags for biomolecules and in particular antibodies. KW - ICP-MS KW - Laser ablation KW - Cell KW - Antibody KW - Immunohistochemistry KW - Lanthanoid KW - Mass cytometry KW - Imaging PY - 2022 SN - 978-3-11069-645-5 SN - 978-3-11069-636-3 DO - https://doi.org/10.1515/9783110696455-013 SP - 399 EP - 444 PB - De Gruyter CY - Berlin, Boston ET - 2. rev. and exten. edition AN - OPUS4-55118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. ED - Yokota, H. ED - Frangopol, D. W. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2021 SN - 978-0-367-23278-8 DO - https://doi.org/10.1201/9780429279119-345 SP - 2525 EP - 2531 PB - Taylor & Francis CY - London, UK AN - OPUS4-54168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Niederleithinger, Ernst ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - NDE 4.0 in Civil Engineering N2 - Civil engineering industry is one of the most important industry sectors in the worldwide economy. It contributes significantly to the gross economic product and general employment. Even more important, it provides many of the basic needs of the society (e.g., housing, infrastructure, and protection from natural hazards). The concept of “Industry 4.0” or “Smart Production” has not yet made significant progress in the civil engineering industry. The designing, building, and operating processes are still widely dominated by the exchange of printed documents and drawings. Most objects (buildings and other constructions) are unique, and a large part of the production still requires a large amount of manual labor. As-built documentation and quality assurance are often neglected. Civil engineering is among the industry sectors with the lowest level of digitalization and the lowest gain in productivity. However, this is going to change. In the past decade, several drivers have challenged the ways clients, contractors, and authorities currently operate. These drivers include but are not limited to an increasing demand for serialization and automatization or the mandatory introduction of “Building Information Modeling” (BIM) in public procurement as well as the upcoming use of digital twins. NDE plays an increasing role in quality assurance, condition assessment, and monitoring of structures. However, with very few exceptions, applications are mostly nonstandardized and performed only at selected sites. To change this, the NDT-CE community including manufacturers, service providers, clients, and the scientific community must work consistently on open data formats, interfaces to BIM, standardization, and validated ways for a quantitative use of the results in the assessment of constructions. KW - NDE 4.0 KW - Civil engineering KW - BIM KW - IFC PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8 SP - 1 EP - 14 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-54161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Colini, Claudia A1 - Shevchuk, I. A1 - Huskin, K. A. A1 - Rabin, Ira A1 - Hahn, Oliver ED - Quenzer, J. B. T1 - A New Standard Protocol for Identification of Writing Media N2 - Our standard protocol for the characterisation of writing materials within advanced manuscript studies has been successfully used to investigate manuscripts written with a pure ink on a homogeneous writing surface. However, this protocol is inadequate for analysing documents penned in mixed inks. We present here the advantages and limitations of the improved version of the protocol, which now includes imaging further into the infrared region (1100−1700 nm). KW - Archaeometry KW - Manuscripts KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543454 SN - 978-3-11-074545-0 DO - https://doi.org/10.1515/9783110753301-009 VL - 25 SP - 161 EP - 182 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-54345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Hahn, Oliver A1 - Golle, U. A1 - Wintermann, Carsten A1 - Laurenza, D. ED - Quenzer, J. B. T1 - Scientific Analysis of Leonardo’s Manuscript with Anatomic Drawings and Notes N2 - In this paper, we discuss the importance of scientifically investigating cultural artefacts in a non-invasive way. Taking as test case Leonardo da Vinci’s Manuscript with anatomic drawings and notes, which is stored in Weimar, we clarify fundamental steps in the chronology of this folio. By means of microscopy, infrared reflectography, UV photography, and X-ray fluorescence analysis, we were able to identify various types of sketching material and several varieties of iron gall ink. For his sketches, Leonardo used two different sketching tools, a lead pencil and a graphite pencil, as well as several types of ink for developing these sketches into drawings. With regard to ink, it is important to observe that there is no difference between the ink Leonardo used for drawing and the ink he used for writing text. Based on the materials analysed, we suggest a chronology for the creation of this unique folio. KW - Archaeometry KW - Non-invasive analysis KW - Drawings KW - Leonardo da Vinci PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543460 SN - 978-3-11-074545-0 DO - https://doi.org/10.1515/9783110753301-011 VL - 25 SP - 213 EP - 228 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-54346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Dietz, Georg A1 - Golle, U. A1 - Hahn, Oliver A1 - Ketelsen, T. A1 - Melzer, C. A1 - Wintermann, Carsten ED - Semff, M. T1 - Der fabelhafte Möglichmacher N2 - Der Beitrag würdigt die Verdienste Wolfgang Hollers bei der Etablierung fächerübergreifender Kooperationen zwischen Natur- und Geisteswissenschaften innerhalb der Zeichnungsforschung. KW - Archäometrie PY - 2022 SN - 978-3-947641-20-8 SP - 370 EP - 371 PB - Sieveking Verlag CY - München AN - OPUS4-54355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Stephan-Scherb, Christiane ED - Schorr, S. ED - Weidenthaler, C. T1 - Crystallographic challenges in corrosion research N2 - High-temperature corrosion is a widespread problem in various industries. As soon as a hot and reactive gas (CO2, O2, H2O, SO2, NOx, etc.) is in contact with a solid, physico-chemical processes at the surface and interfaces lead to material degradation. The processes are dynamic and controlled by thermodynamic and kinetic boundary conditions. Whether a reaction product is protective or not depends on various factors, such as chemical composition of the solid and the reactive media, surface treatment as well as diffusion and transport paths of cations and anions. Resulting chemical and structural inhomogeneities with the corrosion layers are characterized by off stoichiometry within cationic and anionic sub lattices. The competitive processes can be studied by various techniques of applied crystallography. This chapter gives an overview on the challenges of chemical-structural Analysis of reaction products by crystallographic methods such as X-ray diffraction and X-ray near-edge structure spectroscopy and scanning electron microscopy electron backscatter diffraction (SEM-EBSD) for corrosion science. KW - High-temperature corrosion KW - Oxidation KW - Diffraction KW - Spectroscopy KW - Oxides PY - 2021 DO - https://doi.org/10.1515/9783110674910-009 SP - 291 PB - De Gruyter ET - 1 AN - OPUS4-52903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bertovic, Marija A1 - Virkkunen, I. ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - NDE 4.0: New Paradigm for the NDE Inspection Personnel N2 - Nondestructive evaluation (NDE) is entering an era of the fourth industrial revolution and will undergo a major transformation. NDE is a vital part of industry and a successful move to NDE 4.0, it will require not just developing and embracing new technologies, but also developing and adopting new ways of working and becoming an integral part of the overall Industry 4.0. This will pose new challenges for the inspection personnel. To ensure the expected benefits from NDE 4.0, inspectors need stay in charge of the changing inspections. The promised autonomy and interconnectedness of NDE 4.0 will supersede the majority of traditional inspector tasks and will in turn require a different set of skills and raise different demands and challenges for the inspection personnel, thus conflicting the current “procedure-following”-“level I-III” paradigm. The new industry 4.0 technologies can be integrated into the current framework, but exploiting their full potential requires changes in the role of the inspectors. The inspectors will be relieved from the tedious and error-prone aspects of the current system. At the same time, they will need to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. We propose that the traditional inspector roles will be transformed into that of the system developer, caretaker, and problem solver, each requiring a specific set of skills and assuming different responsibilities. For full NDE 4.0, NDE must abandon its traditional role as a self-contained entity with well-defined boundaries and take its role in the wider system that is the industry 4.0. KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human-Machine Interaction KW - Human Factors KW - Acceptance PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8_9-1 SP - 1 EP - 31 PB - Springer, Cham AN - OPUS4-53551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Traub, Heike ED - Milacic, R. ED - Scancar, J. ED - Goenaga-Infante, H. ED - Vidmar, J. T1 - Imaging of metal-based nanoparticles in tissue and cell samples by laser ablation inductively coupled plasma mass spectrometry N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is nowadays a versatile and powerful analytical method for direct solid sample analysis. The applicability has been demonstrated for a wide variety of samples covering hard and soft materials. In an imaging mode the technique provides quantitative information on the elemental distribution within a sample. LA-ICP-MS imaging is of particular interest in biomedical research as the distribution of an element gives valuable insight on uptake and distribution of essential and toxic trace elements, administered contrast agents as well es nanoparticles. LA-ICP-MS is therefore a powerful complement to other imaging techniques. Recent instrumental improvements, especially in sample chamber design, have contributed to better sensitivity and spatial resolution enabling subcellular imaging. The book chapter provides a comprehensive overview about spatially resolved localisation and quantification of various nanoparticles in cells and tissue thin sections by LA-ICP-MS. Furthermore, different sample preparation strategies and internal standardisation and calibration approaches for bioimaging by LA-ICP-MS are summarized and discussed. Metal-containing nanomaterials are used in numerous fields ranging from industrial applications to nanomedicine. Several studies have demonstrated that the physicochemical properties of nanoparticles have an impact on their pharmacokinetics, transfer and clearance. The high sensitivity and multielement capability of LA-ICP-MS enables the elucidation of interactions between tissue components and nanomaterials used as imaging probes or drug carriers. Potential toxic effects are investigated as well. Thus, LA imaging significantly supports the clinical translation of safe and efficient nanoparticles for diagnostic and therapeutic purposes. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Nanomaterial KW - Tissue KW - Cell PY - 2021 SN - 978-0-323-85305-7 SN - 0166-526X VL - 93 SP - 173 EP - 240 PB - Elsevier CY - Amsterdam ET - 1 AN - OPUS4-52775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Gornushkin, Igor ED - Galbács, G. T1 - Calibration-Free Quantitative Analysis N2 - Calibration-free methods in laser-induced breakdown spectroscopy, CF LIBS, serve as an alternative to calibration-based LIBS techniques. Their major advantage is the ability for fast chemical analysis in situations where matrix-matched standards are not readily available (as, e.g., in the analysis of biological materials and remote analysis) or amount of samples are limited. Their main applications are in the industry, geology, biology, archeology, and even space exploration. This chapter overviews the principle of operation and performance of CF LIBS techniques. KW - Laser induced plasma KW - Calibration-free LIBS PY - 2022 SN - 978-3-031-14501-8 DO - https://doi.org/10.1007/978-3-031-14502-5 SP - 67 EP - 100 PB - Springer Nature Switzerland AG AN - OPUS4-56651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -