TY - JOUR A1 - Szymoniak, Paulina A1 - Pauw, Brian Richard A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite N2 - The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry as well as temperature modulated calorimetry and dielectric spectroscopy, was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature for an epoxy-based composite a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for nanocomposites the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. Taking the sample with highest number of mobile segments as reference state it was possible to estimate the amount of RAF. KW - Nanocomposite PY - 2020 DO - https://doi.org/10.1039/d0sm00744g SN - 1744-683X VL - 16 IS - 23 SP - 5406 EP - 5421 PB - Royal Chemical Society AN - OPUS4-50883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanabria, S. J. A1 - Baensch, Franziska A1 - Zauner, M. A1 - Niemz, P. T1 - In‑situ quantification of microscopic contributions of individual cells to macroscopic wood deformation with synchrotron computed tomography N2 - Wood-based composites hold the promise of sustainable construction. Understanding the influence on wood cellular microstructure in the macroscopic mechanical behavior is key for engineering highperformance composites. In this work, we report a novel Individual Cell Tracking (ICT) approach for in-situ quantification of nanometer-scale deformations of individual wood cells during mechanical loading of macroscopic millimeter-scale wood samples. Softwood samples containing > 104 cells were subjected to controlled radial tensile and longitudinal compressive load in a synchrotron radiation micro-computed tomography (SRμCT) setup. Tracheid and wood ray cells were automatically segmented, and their geometric variations were tracked during load. Finally, interactions between microstructure deformations (lumen geometry, cell wall thickness), cellular arrangement (annual growth rings, anisotropy, wood ray presence) with the macroscopic deformation response were investigated. The results provide cellular insight into macroscopic relations, such as anisotropic Poisson effects, and allow direct observation of previously suspected wood ray reinforcing effects. The method is also appropriate for investigation of non-linear deformation effects, such as buckling and deformation recovery after failure, and gives insight into less studied aspects, such as changes in lumen diameter and cell wall thickness during uniaxial load. ICT provides an experimental tool for direct validation of hierarchical mechanical models on real biological composites. KW - Wood materials KW - Micro-comuted tomography (µCT) KW - Individual cell tracking KW - Stress-strain behaviour PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518157 DO - https://doi.org/10.1038/S41598-020-78028-4 SN - 2045-2322 VL - 10 SP - 1 EP - 16 PB - Springer nature AN - OPUS4-51815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super Resolution KW - Laser Thermography KW - Non Destructive Testing KW - Comressed Sensing KW - Inverse Problem KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519016 DO - https://doi.org/10.1038/s41598-020-77979-y VL - 10 IS - 1 SP - 22357 PB - Springer Nature AN - OPUS4-51901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valdestilhas, Andre A1 - Bayerlein, Bernd A1 - Moreno Torres, Benjami A1 - Zia, Ghezal Ahmad Jan A1 - Muth, Thilo T1 - The Intersection Between Semantic Web and Materials Science N2 - The application and benefits of Semantic Web Technologies (SWT) for managing, sharing, and (re-)using of research data are demonstrated in implementations in the field of Materials Science and Engineering (MSE). However, a compilation and classification are needed to fully recognize the scattered published works with its unique added values. Here, the primary use of SWT at the interface with MSE is identified using specifically created categories. This overview highlights promising opportunities for the application of SWT to MSE, such as enhancing the quality of experimental processes, enriching data with contextual information in knowledge graphs, or using ontologies to perform specific queries on semantically structured data. While interdisciplinary work between the two fields is still in its early stages, a great need is identified to facilitate access for nonexperts and develop and provide user-friendly tools and workflows. The full potential of SWT can best be achieved in the long term by the broad acceptance and active participation of the MSE community. In perspective, these technological solutions will advance the field of MSE by making data FAIR. Data-driven approaches will benefit from these data structures and their connections to catalyze knowledge generation in MSE. KW - Linked open data KW - Materials science KW - Ontology KW - Semantic web PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575506 DO - https://doi.org/10.1002/aisy.202300051 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menero-Valdés, P. A1 - Chronakis, Michail Ioannis A1 - Fernández, B. A1 - Quarles Jr., C. D. A1 - González-Iglesias, H. A1 - Meermann, Björn A1 - Pereiro, R. T1 - Single Cell–ICP–ToF-MS for the Multiplexed Determination of Proteins: Evaluation of the Cellular Stress Response N2 - An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell–inductively coupled plasma–time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment. KW - Peptides and Proteins KW - Immunology KW - Metals PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581630 DO - https://doi.org/10.1021/acs.analchem.3c02558 VL - 95 IS - 35 SP - 13322 EP - 13329 PB - ACS Publications AN - OPUS4-58163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. A. T1 - Miniaturized Protein Digestion Using Acoustic Levitation with Online High Resolution Mass Spectrometry N2 - The combination of acoustically levitated droplets, mid-IR laser evaporation, and subsequent post-ionization by secondary electrospray ionization was applied for monitoring the enzymatic digestion of various proteins. Acoustically levitated droplets are an ideal, wall-free model reactor, readily allowing compartmentalized microfluidic trypsin digestions. Time-resolved interrogation of the droplets yielded real-time information on the progress of the reaction and thus provided insights into reaction kinetics. After 30 min of digestion in the acoustic levitator, the obtained protein sequence coverages were identical to the reference overnight digestions. Importantly, our results clearly demonstrate that the applied experimental setup can be used for the real-time investigation of chemical reactions. Furthermore, the described methodology only uses a fraction of the typically applied amounts of solvent, analyte, and trypsin. Thus, the results exemplify the use of acoustic levitation as a green analytical chemistry alternative to the currently used batch reactions. KW - Acoustic levitation KW - Protein analysis KW - Mass spectrometry PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05334 VL - 95 SP - 4190 EP - 4195 PB - ACS Publications AN - OPUS4-57053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Becher, S. A1 - Dierckes, G. A1 - Langhammer, Nicole A1 - Cossmer, Antje A1 - von der Au, Marcus A1 - Göckener, B. A1 - Fliedner, A. A1 - Rüdel, H. A1 - Koschorreck, J. A1 - Meermann, Björn T1 - Quantification and characterization of PFASs in suspended particulate matter (SPM) of German rivers using EOF, dTOPA, (non-)target HRMS N2 - In this study, we compare analytical methods for PFAS determination–target analysis, non-target screening (NTS), direct total oxidizable precursor assay (dTOPA) and extractable organically bound fluorine (EOF). Therefore, suspended particulate matter (SPM) samples from German rivers at different locations in time series from2005 to 2020 were analyzed to investigate temporal and spatially resolved trends. In this study 3 PFAS mass balances approaches were utilized: (i) PFAA target vs. PFAS dTOPA, (ii) PFAS target vs. EOF and (iii) PFAS target vs. PFAS dTOPA vs. organofluorines NTS vs. EOF. Mass balance approach (i) revealed high proportions of precursor substances in SPM samples. For the time resolved analysis an increase from 94% (2005) to 97% in 2019 was observable. Also for the spatial resolved analysis precursor proportions were high with >84% at all sampling sites. Mass balance approach (ii) showed that the unidentified EOF (uEOF) fraction increased over time from82% (2005) to 99% (2019). Furthermore, along the river courses the uEOF increased. In the combined mass balance approach (iii) using 4 different analytical approaches EOF fractions were further unraveled. The EOF pattern was fully explainable at the sampling sites at Saar and Elbe rivers. For the time resolved analysis, an increased proportion of the EOF was now explainable. However, still 27% of the EOF for the time resolved analysis and 25% of the EOF for the spatial resolved analysis remained unknown. Therefore, in a complementary approach, both the EOF and dTOPA reveal unknown gaps in the PFAS mass balance and are valuable contributions to PFAS risk assessment. Further research is needed to identify organofluorines summarized in the EOF parameter. KW - PFAS KW - HR-CS-GFMAS KW - Fluorine KW - SPM KW - LC-MS/MS PY - 2023 DO - https://doi.org/10.1016/j.scitotenv.2023.163753 SN - 1879-1026 SN - 0048-9697 VL - 885 SP - 1 EP - 12 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Westphalen, Tanja A1 - Retzmann, Anika A1 - Schneider, Rudolf T1 - Factors affecting the hydrolysis of the antibiotic amoxicillin in the aquatic environment N2 - The environmental fate of the frequently used broad-spectrum β-lactam antibiotic amoxicillin (AMX) is of high concern regarding the potential evolution of antimicrobial resistance (AMR). Moreover, it is known that AMX is prone to hydrolysis, yielding a variety of hydrolysis products (HPs) with yet unknown effects. Studies to identify those HPs and investigate their formation mechanisms have been reported but a long-term study on their stability in real water samples was missing. In this regard, we investigated the hydrolysis of AMX at two concentration levels in four distinct water types under three different storage conditions over two months. Concentrations of AMX and four relevant HPs were monitored by an LC-MS/MS method revealing pronounced differences in the hydrolysis rate of AMX in tap water and mineral water on the one hand (fast) and surface water on the other(slow). In this context, the occurrence, relative intensities, and stability of certain HPs are more dependent on the water type than on the storage condition. As clarified by ICP-MS, the main difference between the water types was the content of the metals copper and zinc which are supposed to catalyze AMX hydrolysis demonstrating an effective method to degrade AMX at ambient conditions. KW - β-lactam KW - Stability KW - Degradation KW - Hydrolysis products KW - LC-MS/MS KW - ICP-MS PY - 2023 DO - https://doi.org/10.1016/j.chemosphere.2022.136921 SN - 0045-6535 VL - 311 SP - 136921 PB - Elsevier Ltd. AN - OPUS4-56124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavasarytė, Lina A1 - Azevedo do Nascimento, Allana A1 - Cysne Barbosa, Ana Paula A1 - Trappe, Volker A1 - Melo, Daniel T1 - Effects of particle size and particle concentration of poly (ethylene-co-methacrylic acid) on properties of epoxy resin N2 - Self-healing polymers have been developed to improve durability and reduce costs associated with maintenance during service. The addition of thermoplastics to thermosets to produce mendable polymers appears as a promising selfhealing technique. In this study, poly (ethylene-co-methacrylic acid) (EMAA) was added to epoxy resin and the effects of EMAA addition on epoxy properties were evaluated. Specimens with two different contents of thermoplastic and particles sizes were manufactured. A two-level full factorial experimental design was used to evaluate the effect of particle size and particle content on properties of epoxy modified with addition of EMAA. Tensile tests and dynamic mechanical analysis (DMA) were used and the evaluated responses were tensile strength, modulus of elasticity, and glass transition temperature (Tg). X-ray computed tomography (XCT) was used to investigate particle size and concentration after manufacturing. It was found that the particle concentration has greater effects on stress–strain behavior of epoxy while Tg was not significantly affected by neither of the analyzed entrance variables. KW - Fracture KW - Self-healing KW - Epoxy KW - Thermoplastic PY - 2024 DO - https://doi.org/10.1002/app.55677 SN - 0021-8995 SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-60205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Sommerfeld, Thomas A1 - Riedel, Maren A1 - Leube, Peter A1 - Kalbe, Ute A1 - Schoknecht, Ute A1 - Simon, Franz-Georg T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Ski Waxes and Snow from Cross-Country Skiing in Germany - Comparative study of Sum Parameter and Target Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are often environmentally exposed via discharge through human consumer products, such as ski waxes. In our study we analyzed various ski waxes from the 1980s and 2020s, to determine both the sum parameter values total fluorine (TF), extractable organically bound fluorine (EOF), hydrolysable organically bound fluorine (HOF) as well as targeted PFAS analysis. This showed that modern high-performance waxes contain up to 6 % TF, but also PFAS-free labelled ski waxes contain traces of PFAS with EOF/HOF values in the low mg kg-1 range. With the ban of all fluorine-based waxes with the start of the 2023/2024 winter season this will probably change soon. Moreover, we applied our analysis methods to snow samples from a frequently used cross country ski trail (Kammloipe) in the Ore Mountain region in Germany, assessing the potential PFAS entry/discharge through ski waxes. Melted snow samples from different spots were analyzed by the adsorbable organically bound fluorine (AOF) sum parameter and PFAS target analysis and confirmed the abrasion of the ski waxes into the snow. Moreover, on a PFAS hotspot also soil samples were analyzed, which indicate that PFAS from the ski waxes adsorb after snow melting into the soil. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Consumer Products PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612760 DO - https://doi.org/10.1016/j.hazadv.2024.100484 VL - 16 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-61276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -