TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market [1]. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 11. Doktorandenseminar 2017 des Arbeitskreis Prozessanalytik der GDCh und DECHEMA CY - Berlin, Germany DA - 12.03.2017 KW - Online NMR Spectroscopy KW - Click chemistry KW - Data analysis PY - 2017 AN - OPUS4-39397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Online NMR Spectroscopy PY - 2017 AN - OPUS4-40283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Kupsch, Andreas A1 - Mueller, Bernd R. A1 - Lange, Axel T1 - X-ray refraction 2D and 3D techniques N2 - X-ray refraction techniques represent a very promising, yet not so wide-spread, set of X-ray techniques based on refraction effects. They allow determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with nanometric detectability. While they are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of microstructural features could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. T2 - ICTMS 2017 CY - Lund, Sweden DA - 26.06.2017 KW - X-ray refraction KW - Composites KW - Damage KW - Cracks KW - Cearmics PY - 2017 AN - OPUS4-41042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Usmani, Shirin A1 - Schlishka, Joerg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Krahl, Thoralf A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, Erhard T1 - Wood protection with nanoparticles: MgF2 and CaF2 N2 - Alkaline earth metal fluoride nanoparticles have been investigated for application in wood protection. Sols of MgF2 and CaF2 were synthesized and their efficacy was tested against fungi and termites (Rehmer 2016, Krahl et al. 2016). The sols were characterized by XRD and SEM. The wood specimens were vacuum impregnated with nanoparticles and then exposed to fungi and termites according to EU certified test conditions. Our results show that wood impregnated with metal fluoride nanoparticles significantly reduce cellulose hydrolysis by fungi and termites. The wood samples were exposed to brown-rot fungi; Coniophora puteana and Poria placenta. Between the two fungi, the overall mass lost due to fungal degradation was lower for treated (MgF2 and CaF2) wood samples exposed to Coniophora puteana. Thus, the metal fluoride nanoparticles impregnated in the wood samples were more efficient in reducing cellulose degradation from Coniophora puteana than from Poria placenta. However the mass loss in samples treated with MgF2 was similar to those treated with CaF2, irrespective of type of fungi. Therefore, it is likely that fungal degradation in treated samples was dependent on the biocidal action of fluorides rather than on the differences in chemical and physical properties of MgF2 and CaF2, respectively. Conversely, for termite exposure, wood samples treated with MgF2 had lower cellulose degradation compared to those treated with CaF2. A possible explanation for this difference in results could be fungi and termites use separate mechanisms for cellulose hydrolysis which will be further investigated. Future experiments include testing the leaching potential of MgF2 and CaF2 nanoparticles from wood. The results from the leaching experiment will test if metal fluoride nanoparticles can provide long-term and environmentally safe protection to wood. T2 - International Research Group (IRG48) Scientific Conference on Wood Protection CY - Ghent, Belgium DA - 04.06.2017 KW - Fluoride KW - Nanoparticles KW - Brown-rot fungi KW - Termites PY - 2017 AN - OPUS4-41019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Rauscher, H. T1 - Volume specific surface area (VSSA) by BET: concept and demonstration on industrial materials N2 - Volume specific surface area (VSSA) as measured by BET constituites a simple and reliable solution to (most) powders. Porous, coated, polydisperse/multimodal materials are to be treated with care, i.e. doubled by analysis with electron microscopy or more advanced BET analysis (e.g. t-plot)for each material in part. T2 - Final NanoDefine Outreach Event: Classification of nanomaterials according to the EU definition CY - Brüssel, Belgium DA - 19.09.2017 KW - VSSA KW - BET KW - Nanoparticles KW - Powder KW - Nanomaterial classfication PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-meetings/125-final-outreach-event-2017 AN - OPUS4-42509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)- type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers that phase separate from solution upon cooling present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We want to present our latest results on the copolymer poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)) that present a UCST in water as well as on two homopolymers based on an acrylamide derivative of 2,6-diaminopyridine, namely poly(N-(6-aminopyridin-2-yl)acrylamide) (PNAPAAm) and poly(N-(6-acetamidopyridin-2-yl)acrylamide) (PNAcAPAAm) that show UCST-type thermoresponsiveness in water/alcohol mixtures. Our focus for P(AAm-co-AN)) is its aggregation behaviour above and below its phase transition temperature as the size of thermoresponsive polymeric systems is of prime importance for biomedical applications (as size dependent processes take place in the body) and is linked to the optical properties of a material that matter in materials science. In the case of PNAPAAm and PNAcAPAAm, we focused on the co-solvency/co-non solvency effect on the phase transition temperature in water/alcohol mixture. Indeed, polymers with UCST behavior below 60°C in water/alcohol mixtures are extremely promising for the preparation of “smart” materials for sensing. T2 - 31st Conference of the European Colloid and Interface Society (ECIS 2017) CY - Madrid, Spain DA - 03.09.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - Acrylamide based polymers PY - 2017 AN - OPUS4-41902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tuning the catalytic activity of silver nanoparticles N2 - The use of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a variety of products, which range from textiles to dietary supplements. Thus, investigations on nanoscale silver become increasingly important in many fields like biomedicine or catalysis. Unfortunately, the results of these studies are extremely diverse and do not lead to a consistent evaluation of the toxicity of silver nanoparticles. The main problem is the use of nonuniform and poorly characterized particles with broad size distributions. To overcome this problem we modified the known polyol process to synthesize ultra-small core-shell silver nanoparticles in a large scale. The particles are highly stable and show no aggregation for more than six months. Small-angle X-ray scattering analysis reveals a narrow size distribution of the silver cores with a mean radius of 3 nm and a distribution width of 0.6 nm. Dynamic light scattering provides a hydrodynamic radius of 10.0 nm and a PDI of 0.09. The stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione and bovine serum albumin have been successfully performed. To demonstrate the broad applicability of our particles we performed catalysis experiments with the reduction of 4-nitrophenol as model reaction. The PAA-stabilized particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is the highest reported in literature for silver nanoparticles. In contrast, GSH and BSA passivate the surface substantially resulting in lower catalytic activities. T2 - Australian Colloid and Interface Symposium 2017 CY - Coffs Harbour, New South Wales, Australia DA - 29.01.2017 KW - SAXS KW - Protein coating KW - Catalysis PY - 2017 AN - OPUS4-39203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Weller, Michael G. T1 - Troubleshooting for the clinical measurement of iron biomarkers using LC-MS/MS: Suppression of sample losses in autosampler vials N2 - We developed a rapid and robust HPLC-MS/MS (QqQ) method for the quantification of hepcidin-25, a promising new biomarker in iron metabolism, in human samples. The novelty of the method is the use of special HPLC vials to avoid adsorptive losses due to the basic character of the peptide that causes interaction with the silanol groups of the vial’s glass surface. Up to 90% decrease in the MS/MS signal was observed, when commercial HPLC vials were used, while vials treated with 3-(2-aminoethylamino)propylmethyldimethoxysilane or 1H,1H,2H,2H-perfluorooctyltriethoxysilane, leading to no losses in the range of physiological hepcidin-25 mean serum levels (10-20 µg/L). T2 - MSACL 2017 EU CY - Salzburg, Austria DA - 10.09.2017 KW - Peptide losses KW - Adsorption KW - Silanization PY - 2017 AN - OPUS4-44613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Holzweber, Markus A1 - Pellegrino, F. A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan T1 - Tracing fluorine at the surface and in the bulk of TiO2 nanoplatelets by means of SEM-EDX, AES and ToF-SIMS N2 - The synthesis of TiO2 nanoplatelets with fluorine-containing reactants is carried out using titanium (IV) butoxide as precursor and concentrated HF as shape controller, the final product requires a working up in order to eliminate or at least to reduce the amount of residual fluorides, which is realized here by well-defined thermal treatment of the samples. Bulk and surface sensitive methods namely scanning electron microscopy with energydispersive X-ray spectroscopy (SEM-EDX), Auger electron spectroscopy (AES) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been applied to trace the presence of any fluorides in dependence on different information depths and measurement sensitivities of these methods. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Konstanz, Germany DA - 07.05.2017 KW - Nanoparticles KW - Surface analysis KW - ToF-SIMS KW - AES KW - SEM-EDX PY - 2017 AN - OPUS4-40265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koegler, M. A1 - Paul, Andrea A1 - Pellicer-Alborch, K. A1 - Anane, E. A1 - Birkholz, M. A1 - Bunker, A. A1 - Viitala, T. A1 - Junne, S. A1 - Neubauer, P. T1 - Time-gated Raman spectroscopy and SERS as advanced technologies in bioprocess monitoring N2 - Raman spectroscopy is becoming a powerful process analytical technology (PAT) tool. Until now Raman technology has not shown its full potential in bioprocess on-line monitoring due to several technical challenges. Because of only small? interference from water molecules, Raman-spectroscopy is in contrast to IR spectroscopy able to follow changes of metabolite concentrations in dilute aqueous solutions. Results from common CCD-based process Raman-spectrometers reveal only barely identifiable peaks with a dominating (fluorescence) background. To solve this, Raman spectroscopy needs: (A) an enhancement to increase the limit of detection (LOD), and (B) a reliable method to distinguish the Raman signal from the sample-related auto-fluorescence. SERS (surface enhanced Raman spectroscopy) acts as an optical "nano-antenna"-effect. It causes a dipolar localized surface Plasmon resonance effect due to noble metallic nanoparticles or roughened metal and improves the limit of detection (LOD) significantly. Another new process-monitoring technique, which removes the fluorescence background in Raman-measurements is called time-gated Raman spectroscopy. It uses a picosecond pulsed Nd:YVO4-laser as emission source (exc= 532 nm) and a gated SPAD-array (Single Photon Avalanche Detector) detector instead of commonly used CCD (Charged Coupled Device)-detectors and CW (Continues Wave) laser emission. Time-Gate can measure the Raman-signal before the stronger fluorescence signal reaches the detector. In this study we utilized both SERS (Surface Enhanced Raman Spectroscopy) and time-gated Raman spectroscopy (TG-Raman) in combination on cell-free supernatant samples of an Escherichia coli cultivation with mineral salt media and a lactic acid bacteria fermentation with complex media. As a reference method for the estimation of amino acids and other metabolites, HPLC-RID and HPLC-FLD were used to evaluate the Raman-based detection. The quantitative evaluation of Raman data was performed by multivariate data analysis such as principal component analysis (PCA) and partial least squares regression (PLSR). For the first time, we can show that both qualitative and quantitative measurements are conducted successfully with both, SERS and time-gated Raman methods in industrially relevant media, so that a fast and reliable in situ or bypassed concentration measurement becomes feasible. T2 - 2. Photonics Finland, Optics and Photonics Days 2017 CY - Oulu, Finland DA - 29.05.2017 KW - Time-gate Raman KW - PAT KW - Chemometrics PY - 2017 UR - http://www.photonics.fi/event/opd17-optics-photonics-days-2017/ AN - OPUS4-41182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -