TY - CONF A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Rurack, Knut T1 - Fluorescence sensor for the long-term monitoring of gaseous ammonia N2 - Ammonia and its reaction products can cause considerable damage of human health and ecosystems, increasing the necessity for reliable and reversible sensors to monitor traces of gaseous ammonia in ambient air directly on-site or in the field. Although various types of gas sensors are available, fluorescence sensors have gained importance due to advantages such as high sensitivity and facile miniaturization. Here, we present the development of a sensor material for the detection of gaseous ammonia in the lower ppm to ppb range by incorporation of a fluorescent dye, which shows reversible fluorescence modulations as a function of analyte concentration, into a polymer matrix to ensure the accumulation of ammonia. A gas standard generator producing standard gas mixtures, which comply with the metrological traceability in the desired environmentally relevant measurement range, was used to calibrate the optical sensor system. To integrate the sensor material into a mobile device, a prototype of a hand-held instrument was developed, enabling straightforward data acquisition over a long period. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Miniaturized sensor device PY - 2017 AN - OPUS4-43143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Gawlitza, Kornelia A1 - Bell, Jérémy A1 - Mansurova, Maria A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Semi-automatic Gas Measurement Device Based on Fluorescent Multi-gas Sensors N2 - This paper describes the development of a semi-automatic gas measurement device presenting potentially a broad range of applications, noteworthy in the agricultural sector. Non-reversible fluorescent molecular sensors were designed and syn-thesized. Upon, integration into a hydrogel matrix with an optimal ratio of co-solvents, the sensors reacting selectively to ammonia were illuminated by excitation light to produce a concentration-correlated fluorescence emission. An automated mechanical-elec-trical device initiates a given gas mixture and thus simulates con-centrations similar to a threshold value. The aim of this project is to develop a sensor or a low-cost method which can monitor low concentrations of harmful gases and aid in their elimination or regulation in livestock housing, barns or stables. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Gas analysis KW - Fluorescence KW - Embedded sensor KW - Spectroscopy KW - Environment KW - Agricultural economy PY - 2019 AN - OPUS4-49502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -