TY - THES A1 - Müller, Anja T1 - Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology N2 - Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. In the paper from 2019 nanoparticle shell thicknesses are extracted from the elastic-peak intensities in an XPS spectrum based on an ideal particle morphology. This happens for a series of CSNP samples comprising a poly(tetrafluoroethylene) (PTFE) core and either a poly(methyl methacrylate) (PMMA) or polystyrene (PS) shell. The same paper as well as the paper from 2020 demonstrate for the first time, that the analysis of the inelastic background in an XPS spectrum of CSNPs can identify and quantify the heterogeneity of the shell and the incomplete encapsulation of the core. The result from an XPS experiment is always an average across a large nanoparticle ensemble. Deviations from an ideal morphology within a single particle of the sample cannot be assessed separately. As opposed to that, a spatial resolution of 35 nm enables STXM to visualize the interior of single CSNPs which exhibit a sufficient X-ray absorption contrast between core and shell material. In the paper from 2018 a STXM analysis is demonstrated based on the example of the PTFE-PS CSNP samples already mentioned in the previous paragraph. In the publication from 2021 (Ca/Sr)F₂ core-shell like nanoparticle ensembles for the practical use in, among others, antireflective coatings are investigated. These nanoparticles do not possess a sharp interface between core and shell material, which is why a shell thickness determination as described in the second paragraph is inappropriate. Instead, in-depth profiles of the chemical composition are obtained by XPS experiments based on synchrotron radiation with variable X-ray photon energy to elucidate the internal morphology of the particles. Additionally, theoretical in-depth profiles of Ca and Sr XPS peak intensities are simulated, in order to facilitate the interpretation of the experiments. Thus, an enrichment of CaF₂ at the particle surface was determined, which could hardly have been assessed by any other analytical technique. Because this kind of non-destructive depth profiling by XPS is very demanding, more than usual effort is spent on gapless documentation of the experiments to ensure full reproducibility. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the papers in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis. N2 - Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Im Artikel von 2019 werden Schalendicken von Nanopartikeln aus den elastischen Peakintensitäten im XPS-Spektrum unter Annahme einer idealen Partikelmorphologie abgeleitet. Dies geschieht für eine Reihe von CSNP-Proben, welche aus einem Polytetrafluoroethylen- (PTFE) Kern und entweder einer Polymethylmethacrylat- (PMMA) oder Polystyrol- (PS) Schale bestehen. Sowohl dieser Artikel als auch der von 2020 zeigen erstmals, dass die Auswertung des inelastischen Untergrunds eines CSNP-XPS-Spektrums in der Lage ist, die Heterogenität der Schale und die unvollständige Ummantelung des Kerns zu identifizieren und zu quantifizieren. Das Ergebnis eines XPS-Experiments ist immer ein Mittelwert über ein großes Nanopartikelensemble. Inwiefern ein einzelner Partikel innerhalb der Probe von einer idealen Morphologie abweicht, kann nicht gesondert erfasst werden. Im Gegensatz dazu kann STXM mit einer räumlichen Auflösung von 35 nm das Innere einzelner CSNPs visualisieren, sofern sie genügend Röntgenabsorptionskontrast zwischen Kern- und Schalenmaterial aufweisen. Im Artikel von 2018 wird am Beispiel der bereits im vorherigen Abschnitt genannt PTFE-PS-CSNPProben eine solche STXM-Untersuchung demonstriert. In der Veröffentlichung von 2021 werden Kern-Schale-artige (Ca/Sr)F₂-Nanopartikel für den praktischen Einsatz in unter anderem entspiegelnden Beschichtungen untersucht. Da hier keine scharfe Grenzfläche zwischen Kern- und Schalenmaterial vorliegt, ist eine Schalendickenbestimmung, wie sie im zweiten Abschnitt diskutiert wird, nicht sinnvoll. Stattdessen werden mit Hilfe von XPS, angeregt mit Synchrotronstrahlung bei variabler Röntgenphotonenenergie, Tiefenprofile der chemischen Zusammensetzung generiert, um die innere Morphologie der Partikel aufzuklären. Zusätzlich werden theoretische Tiefenprofile der Ca- und Sr-XPS-Peakintensitäten simuliert, um die Interpretation der Experimente zu erleichtern. So wurde eine CaF₂-Anreicherung an der Oberfläche der Partikel festgestellt, die kaum mit einer anderen analytischen Methode hätte entdeckt werden können. Da diese zerstörungsfreie Bestimmung von XPS-Tiefenprofilen sehr anspruchsvoll ist, wird noch mehr als üblich auf die lückenlose Dokumentation des Experiments geachtet, um vollständige Reproduzierbarkeit zu gewährleisten. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. KW - Core-shell nanoparticle (CSNP) KW - X-ray photoelectron spectroscopy (XPS) KW - Scanning transmission X-ray microscopy (STXM) PY - 2022 U6 - https://doi.org/10.18452/24312 SP - i EP - 243 PB - Humboldt-Universität CY - Berlin AN - OPUS4-54991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -