TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission and Traceable Optical Measurements N2 - Research of division Biophotonics at the Federal Institute for Materials Research and Testing (BAM) covers several topics including photophysics of molecular and nanocrystalline emitters, the development of signal enhancement, multiplexing, and barcoding strategies, surface group quantification, the rational design of different types of stimuli-responsive optical probes, and concepts and reference materials for the validation of optical-spectroscopic measurements. In the following representative examples for each of these topics are given. Also, current developments like single particle spectroscopy and flow cytometry with lifetime detection and newly certified fluorescence quantum yield standards are presented. T2 - Kolloquium BfR CY - Berlin, Germany DA - 12.10.2020 KW - Fluorescence KW - Quantitative spectroscopy KW - Single particle spectroscopy KW - Multiplexing KW - Reference materials KW - Optical probes KW - Sensor molecules KW - Assay KW - Dye KW - Quantum yield KW - Method development KW - surface group analysis KW - synthesis KW - fluorescence standards PY - 2020 AN - OPUS4-51449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Introduction to Fluorescence Spectroscopy N2 - A brief introduction to fluorescence spectroscopy will be provided, ranging from typically measured fluorescence quantities over instrument-specific contributions to measured fluorescence signals to selected applications. In this context, an overview of the photoluminescence properties of molecular and nanoscale luminescence reporters will be given including a brief insight into their photophysics and fluorescence standards designed by division Biophotonics for the calibration and instrument performance validation of fluorescence measuring devices will be presented. T2 - Analytical Academy BAM CY - Online meeting DA - 17.11.2020 KW - Fluorescence KW - Quality assurance KW - Quantification KW - Linearity KW - Measurement uncertainty KW - Method KW - Nano particle KW - Dye PY - 2020 AN - OPUS4-51619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Martin A1 - Weller, Michael G. T1 - Fast Detection of TNT at ppt Level by an Immunofluorometric Biosensor N2 - The mechanism of this system is based on kinetic competition. This biosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. If the explosive 2,4,6-trinitrotoluene (TNT) is introduced some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein. The fluorescence is detected by highly sensitive laser-induced fluorescence with a conventional CMOS camera. The system achieved limits of detection of approx.1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 minutes. A cross-reactivity test with 5000 pM solutions of pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) showed no cross reactivity. T2 - Doktorandenseminar 2020 des Arbeitskreis-Prozessanalytik CY - Online meeting DA - 21.09.2020 KW - TNT KW - Explosive KW - Antibody KW - Fluorescence KW - Biosensor KW - Affinity PY - 2020 AN - OPUS4-51314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -