TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert A1 - Milmann, Boris T1 - LAUS - Erste praktische Erfahrungen mit einem neuartigen Ultraschallsystem großer Eindringtiefe N2 - Konventionelle Systeme zur Ultraschall-Echo-Prüfung von Betonbauteilen sind in ihrer Eindringtiefe auf etwa einem Meter begrenzt. Zur Prüfung stärkerer Objekte war die Entwicklung eines neuartigen Prüfsystems notwendig. Das LAUS-System (Large Aperture UltraSound) besteht aus 12 einzelnen Arrays, die mit jeweils 32 Einzelprüfköpfen (Scherwellen, 25 – 50 kHz) als Sender oder Empfänger betrieben werden können. Sie werden unabhängig auf Betonoberflächen mit Unterdruck befestigt und kommunizieren drahtlos untereinander und mit der Zentraleinheit. Alle möglichen Kombinationen ergeben 132 Einzelmessungen, die zur Rekonstruktion des durchschallten Volumens genutzt werden. Mehrere dieser Datensätze lassen sich zu einer 3D-Auswertung kombinieren. Das System wurde an mehreren Testobjekten und Bauwerken erfolgreich erprobt. So konnte die fünf Meter dicke, sehr stark bewehrte Fundamentplatte des Fallturms auf dem BAM-Testgelände bei Horstwalde durchschallt werden. Ein zweites Beispiel ist die erfolgreiche Detektion von Spannkanälen in 1,8 m Tiefe in einem massiven Brückenbauwerk. T2 - Bauwerksdiagnose 2018 CY - Berlin, Germany DA - 15.2.2018 KW - Ultraschall KW - Beton KW - LAUS KW - Brücke KW - Fundament PY - 2018 AN - OPUS4-44577 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Ertel, J.-P. T1 - Foundations N2 - Overview on NDT methods for foundations as a preparation for the practical training T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 27.06.2018 KW - Nondestructive testing KW - Foundations KW - Pile KW - Integrity PY - 2018 AN - OPUS4-45362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 AN - OPUS4-47676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Foundations N2 - NDT-CE methods for foundations. T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 05.07.2017 KW - NDT KW - Foundations KW - Pile integrity testing KW - Parallel seismic KW - Crosshole sonic logging PY - 2017 AN - OPUS4-42663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - State-of-the-art ultrasonic monitoring of concrete N2 - Ultrasonic methods are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The presentation will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with or first installations in real constructions (bridges, tunnel) will also be presented. T2 - CBIR Research Seminar, University of Technology Sydney CY - Sydney, Australia DA - 05.12.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - State-of-the-art of ultrasonic monitoring of concrete N2 - Ultrasonic methods are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The workshop will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with or first installations in real constructions (bridges, tunnel) will also be presented. T2 - The 8th Australian Network of Structural Monitoring Annual Workshop CY - Melbourne, Australia DA - 29.11.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - X-rays without X-rays: Can muon tomography provide pictures from within concrete and other objects? N2 - Until the 1980s radiography was used to inspect civil structures in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Meanwhile, non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features when applied to reinforced or prestressed concrete inspection. Muon tomography has received much attention recently. Muons are particles generated naturally by cosmic rays in the upper atmosphere and pose no risk to humans. Novel detectors and tomographic imaging algorithms have opened new fields of application, mainly in the nuclear sector, but also in spectacular cases such as the Egyptian pyramids. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results have been at least of similar quality compared to ultrasonic and radar imaging, potentially even better. Recently, the research was expanded to more realistic testing problems such as the detection of voids in certain structural elements. However, before practical implementation, more robust, mobile, and affordable detectors would be required as well as user-Friendly imaging and simulation software. The talk also discusses other applications , such as volcanology, mining and geothermal exploration. T2 - RWTH Aachen, Geophysikalisches Seminar CY - Aachen, Germany DA - 11.01.2024 KW - Muon tomography KW - Civil engineering KW - Mining KW - Geothermal engineering PY - 2024 AN - OPUS4-59349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in non-destructive testing and monitoring of concrete N2 - The presentation will give an overview on non-destructive testing techniques being developed at the Federal Institute for Materials Research and Testing, Germany (BAM). This includes ultrasonic methods, ground penetration radar, Laser-Induced Breakdown Spectroscopy (LIBS), infrared thermography, pile testing, sensor technology and building scanner. A focus of the talk will be ultrasonic methods, which are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The presentation will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with our first installations in real constructions (bridges, tunnel) will also be presented. T2 - CIES Research Seminar, University of New South Wales CY - Sydney, Australia DA - 13.12.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Seismic methods for ultrasonic testing in Civil Engineering N2 - Invited presentation on the use of seismic imaging and monitoring technologies in civil engineering T2 - Geophysikalisches Kolloquium der ETH CY - Zürich, Switzerland DA - 17.03.2017 KW - Seimic KW - Ultrasound KW - Monitoring KW - Imaging KW - Concrete PY - 2017 AN - OPUS4-39428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Levee inspection - geophysics between science, standards, reliability and budgets N2 - Numerous case histories show evidence that geophysical methods are valuable tools for levee inspection and monitoring. National and international standards and recommendations recommend the use of geophysics for a variety of tasks. However, in some cases reported have been flaws missed or false indications given. Due to the larger variety in type, size and construction of levees and the even larger variety of potential tasks and targets the success of geophysical surveys still pretty much depends on the available budget and the experience and capabilities of the clients and contractors involved. It is strongly recommended that all relevant parties agree on the detailed objectives of the survey, required accuracy and reliability of the results and any follow up measures. For the most common tasks more research and practical work using techniques as POD (probability of detection), which are well established in other fields of non-destructive testing, would be of benefit. T2 - SAGEEP 2016 CY - Denver, CO, USA DA - 20.03.2016 KW - Levee KW - Inspection KW - Geophysics PY - 2016 AN - OPUS4-35707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Bearce, R. A1 - Mooney, M. A1 - Galindo Guerreros, Julio Cesar A1 - Mackens, S. A1 - Fechner, T. T1 - Innovative seismic and resistivity tools for determining the diameter of jet grouting columns N2 - Jet grouting is used for soil improvement, foundation support and groundwater low control all over the world. It is well accepted and subject of standardization in many countries. However, some issues with the method remain. As the grout columns are produced in the subsurface without visual control in an often inhomogeneous soil, the prediction of the column’s diameter is still a challenge. All methods applied so far have their limitations. The approach presented in this study is twofold. At Colorado School of Mines a resistivity probe has been developed, which is pushed into the fresh grout directly after production. ERT sections are measured and inverted. Given some background information is available, the diameter of the columns can be evaluated. At BAM the focus has been on post-production investigations using seismic borehole methods. After hardening of the concrete seismic waves are sent through the column downhole (sensors placed in a casing in the column’s axis, source on top) and crosshole (source and sensor in boreholes on opposite sides of the column). We have developed a scheme to evaluate the diameter of the column based on travel time measurements without calibration. As this method is eventually more time and cost intensive we assume its application mainly for test columns. These are casted and dug out for visual inspection to determine appropriate grouting parameters. Our method would replace the often very cost intensive visual inspection. Both approaches have been tested at three test columns produced at BAM’s test site at Horstwalde, Germany and on an actual constructions site. Both methods have been in good agreement with the diameters predicted by the jet grouting contractors, which were confirmed in one case by mechanical measurements. T2 - SAGEEP 2016 CY - Denver, CO, USA DA - 20.03.2016 KW - Jet grouting KW - Diameter KW - Quality assurance KW - Seismic PY - 2016 AN - OPUS4-35708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Detecting subtle changes in concrete with coda wave interferometry N2 - Subtle changes in concrete, caused by stress, temperature or deterioration can be detected by ultrasonic transmission measurements evaluated by coda wave interferometry. Background and examples are presented as well as possibilities to locate damages. T2 - New mathematics for a safer world: wave propagation in heterogeneous materials CY - Edinburgh, UK DA - 12.06.2017 KW - Concrete KW - Ultrasound KW - Coda wave interferometry KW - Monitoring PY - 2017 AN - OPUS4-40580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in non-destructive testing and monitoring of concrete N2 - Überblicksvortrag zu Aktivitäten von BAM-8.2 T2 - Seminar der Universität Lund, Fakultät, Technische Geologie und NDT CY - Lund, Sweden DA - 8.3.2018 KW - Concrete KW - Non-Destructive Testing PY - 2018 AN - OPUS4-44575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Von der Ölsuche zum Beton - Geophysikalische Methoden für die ZfP im Bauwesen N2 - Nutzung geophysikalischer Methoden für die zerstörungsfrei Prüfung von Betonbauwerken; Beispiel 1: Reverse Time Migration zur Verbesserung der Abbildungsqualität von Ultraschall-Echo-Prüfungen; Beispiel 2: Eingebettete Transducer und Codawelleninterferometrie für die Bauwerksüberwachung. T2 - DGZfP Arbeitskreis Berlin, 389. Sitzung CY - Berlin, Germany DA - 05.09.2017 KW - Geophysik KW - Zerstörungsfreie Prüfung KW - Monitoring KW - Beton KW - Ultraschall PY - 2017 AN - OPUS4-41849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - X-rays without X-rays: Can muon tomography provide pictures from within concrete objects? N2 - Until the 1980s radiography was used to inspect civil structures in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Meanwhile, non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features when applied to reinforced or prestressed concrete inspection. Muon tomography has received much attention recently. Muons are particles generated naturally by cosmic rays in the upper atmosphere and pose no risk to humans. Novel detectors and tomographic imaging algorithms have opened new fields of application, mainly in the nuclear sector, but also in spectacular cases such as the Egyptian pyramids. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results have been at least of similar quality compared to ultrasonic and radar imaging, potentially even better. Recently, the research was expanded to more realistic testing problems such as the detection of voids in certain structural elements. However, before practical implementation, more robust, mobile, and affordable detectors would be required as well as user-Friendly imaging and simulation software. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Muon tomography KW - Concrete KW - Civil engineering PY - 2023 AN - OPUS4-59347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Epple, Niklas T1 - ridge Monitoring by Ultrasonic Coda Wave Interferometry N2 - The built infrastructure ages and requires regular inspection and, when in doubt, monitoring. To ensure that older concrete bridges showing signs of deterioration can be used safely, several innovative monitoring tools have been introduced, including but not limited to optical, fiber-optic, or acoustic emission techniques. However, there are gaps in the portfolio. A sensing technique that covers a wide range of damage scenarios and larger volumes, while still being sensitive and specific, would be beneficial. For about 15 years, research has been conducted on ultrasonic monitoring of concrete structures that goes beyond the traditional ultrasonic pulse velocity test (PV test), mostly using a very sensitive data evaluation technique called coda wave interferometry. At BAM we have developed sensors and instrumentation specifically for this method. We have instrumented a 70-year-old, severely damaged prestressed concrete bridge in Germany in addition to a commercial monitoring system. We have now collected data for almost 3 years. We can show that we can provide information about the stress distribution in the bridge. We have also been able to confirm that there has been no significant additional damage to the bridge since the installation. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2023 AN - OPUS4-59346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Heckel, Thomas A1 - Brackrock, Daniel T1 - Vorversuche zur Ultraschallprüfung an Groutverbindungen N2 - Im rahmen des themenfeldprojektes LEBEWIND wurden Vorversuche zur Ultraschallprüfung von Groutverbindungen an Offshore-Windenergieanlagen gemacht. Die Experimente mit kommerzieller Prüftechnik in Echo und Transmission durch die Stahlwandung hindurch bestätigten, dass diese Bauweise so nicht prüfbar ist. T2 - Workshop "Grout in der Betriebsphase" CY - Berlin, Germany DA - 22.03.2017 KW - Windenergieanlagen KW - Grout KW - Ultraschall PY - 2017 AN - OPUS4-39541 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - The LAUS: First applications of a new system for ultrasonic imaging of very concrete structures N2 - The LAUS (Large Aperture Ultrasonic System) has been developed to image very thick concrete structures, which are not accessible for commercial systems. The device and the corresponding software is the result of joint research of BAM, an ultrasonic instrument manufacturer and University of Kassel, Germany. It consists of 12 separate arrays of 32 point-contact shear wave transducers each, which can be deployed in flexible configurations. Each array is combined with battery and transmitter, receiver and wireless communication electronics. Three case histories are presented. First the system was deployed on a 5-m thick heavily reinforced foundation slab. The reflection of the slab’s bottom was imaged clearly. In addition, a multiple reflection was registered, thus giving hope that even thicker elements might be imaged by the instrument. Second, the LAUS was used to investigate a massive bridge girder where a heavy rainstorm during concreting had led to imperfections that were visible after removing the formwork was removed. The LAUS could image tendon ducts in 1.8m depth and the backwall closely behind them. Some limited areas showed blurred reflections and were checked by drill holes; these areas were affected by diffuse damage which could be repaired by injections. Third, a large retaining wall was checked for thickness. Meanwhile, the LAUS has been used in underground waste deposits (nuclear and other) for quality assurance of sealing plugs. A confirmed penetration depth of about 7 m has been reached. T2 - ASNT SMT/NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.8.2018 KW - LAUS KW - Ultrasound KW - Imaging KW - Concrete PY - 2018 AN - OPUS4-45828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Non-destructive Evaluation for Nuclear Power Plant concrete infrastructure N2 - The ageing and decommissioning of nuclear concrete infrastructure (e. g. safety containments) as well as the building and closure of waste repositories gives new challenges to non-destructive testing. For example, the quality assurance of very thick concrete structures is beyond the limitations of commercial ultrasonic instrumentation. The presentation introduces typical testing tasks and the application of state of the art NDT techniques. In addition, it describes some new developments in ultrasonic testing and monitoring. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. T2 - Aalto University Special Guest Seminar CY - Espoo, Finland DA - 25.10.2018 KW - Ultrasound KW - Concrete KW - Nuclear PY - 2018 AN - OPUS4-46425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -