TY - CONF A1 - Tiebe, Carlo A1 - Zunkel, Astrid A1 - Klein, Ulrich A1 - Schlischka, Jörg A1 - Klinger, Christian T1 - Materialuntersuchungen zur Schadensanalyse an einem explodierten Umlaufkühler N2 - Ein Umlaufkühler ist im Betrieb explodiert. Splitter des zerborstenen Gehäuses aus Kunststoff wurden mit dem Kühlwasser in die Umgebung geschleudert, am Betriebsort entstand Personenschaden. Bei Funktionsprüfungen am beschädigten Gerät traten unerwartet - aber reproduzierbar - Knalleffekte bei Berührung der Außenoberfläche der Kupfer-Kühlschlange auf. Ein möglicher Mechanismus konnte im Labor durch Synthese von Kupferazid auf Kupferproben und Auslösung vergleichbarer Knalleffekte nachgestellt werden. Damit ist die Plausibilität des beschriebenen Schadensereignisses mit diesem oder einem ähnlich reagierenden Stoff belegt. Ein eindeutiger Nachweis darüber, dass bei dem aufgetretenen Schadensfall dieselbe chemische Reaktion stattgefunden hat, war nicht möglich, da die Belag-Überreste aus dem explodierten Kühlgerät für eine Analyse nicht mehr in ausreichender Menge verfügbar gewesen sind. T2 - BG RCI Präventionstagung, Teil 11 - Inkompatible Systeme – Wenn Chemikalien und Werkstoffe heftig reagieren CY - Online meeting DA - 19.01.2022 KW - Explosion KW - Gutachten KW - Kupferazid KW - Materialuntersuchung KW - Schadensanalyse KW - Umlaufkühler PY - 2022 AN - OPUS4-56686 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Bericht zum Fortschritt des laufenden Projekts: "Entwicklung von Wärmenachbehandlungskonzepten zur Vermeidung von Spannungsrelaxationsrissen" N2 - Dieses Dokument fasst den Projekfortschritt des BAM-Projektes "Entwicklung von Wärmenachbehandlungsstrategien zur Vermeidung von Spannungsrelaxationsrissen" im Rahmen des Fachausschusses 1 "Schweißmetallurgie" des DVS e.V. für das Projektjahr 2021 zusammen und stellt die wichtigsten Ergebnisse in Kurzform vor. T2 - Sitzung des FA1 "Schweißmetallurgie" der Forschungsvereinigung Schweißen und verwandte Verfahren des DVS e.V. CY - Online meeting DA - 22.03.2022 KW - UP-Schweißen KW - Spannungsrelaxationsriss KW - Wärmenachbehandlung KW - Eigenspannungen KW - Schallemissionsanalyse PY - 2022 AN - OPUS4-54525 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kröll, Mirco A1 - Grundtner, R. A1 - Pagano, F. A1 - Nyberg, E. A1 - Heino, V. A1 - Spaltmann, Dirk A1 - Gradt, Thomas T1 - Effects of harmonised procedures in tribology testing N2 - i-TRIBOMAT will provide the world's first Open Innovation Test Bed dedicated to analysing and simulating materials in tribological systems. In order to make necessary results of tribological tests comparable, harmonised ways to produce data are mandatory. Many sources influence the outcome of a Tribological test. Different approaches of institutes were evaluated in best practices via quality management tools minimising the impact on results. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Tribology KW - i-TRIBOMAT KW - Characterisation KW - Digitalisation KW - Harmonisation KW - Round robin tests KW - Interlaboratory tests PY - 2022 AN - OPUS4-55317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zabala, A. A1 - Aginagalde, A. A1 - Llavori, I. A1 - Spaltmann, Dirk A1 - Blunt, L. T1 - Ball-on-flat linear reciprocating tests: Critical assessment of wear volume determination methods N2 - This work presents a critical assessment of wear volume determination methods for ball-on-flat linear reciprocating sliding tribological tests. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Wear KW - Sliding KW - Surface KW - Analysis PY - 2022 AN - OPUS4-55319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Jacobsen, Lars A1 - Michalik, Katarzyna A1 - Mory, David T1 - In situ laser-induced breakdown spectroscopy measurements in stainless steels during TIG welding N2 - Chemical composition of the welding seam and HAZ has significant effect on weld quality. Current inspection methods for weld seams measure and investigate post factum and cannot prevent weld defects. Element burn-off may significantly affect solidification leading to embrittlement or cracking Control of weld chemical compositions insures a controlled solidification and resistance to related weld defects. A prototype of a LIBS controlled welding process is presented. T2 - Forschungsseminar Universität Magdeburg CY - Magdeburg, Germany DA - 17.01.2018 KW - LIBS KW - TIG-Welding KW - Chemical compositions KW - In situ measurements PY - 2018 AN - OPUS4-43830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Münster, C. A1 - Kannengießer, Thomas T1 - Specimen temperature during CGHE and influence on hydrogen determination N2 - Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. T2 - Intermediate Meeting of IIW Subcommission II-E CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen KW - Welding KW - Carrier gas hot extraction KW - Temperature KW - Measurement PY - 2018 AN - OPUS4-44427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Schaupp, Thomas A1 - Muenster, C. A1 - Mente, Tobias A1 - Boellinghaus, Thomas A1 - Kannengießer, Thomas T1 - "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). T2 - IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E CY - Nusa Dua, Bali Island, Indonesia DA - 15.07.2018 KW - Carrier gas hot extraction (CGHE) KW - Welding KW - ISO 3690 KW - Hydrogen KW - Experimental design PY - 2018 AN - OPUS4-45520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen trapping in T24 steel weld joints – Microstructure influence vs. experimental design effect on activation energy for diffusion N2 - A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. T2 - Forschungsseminar Fügetechnik des IWF, Otto-von-Guericke-Universität CY - Magdeburg, Germany DA - 25.04.2018 KW - Creep-resisting materials KW - Diffusion KW - Weld metal KW - Hydrogen embrittlement PY - 2018 AN - OPUS4-44879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - Duplex (DSS) and austenitic stainless steels (ASS) are frequently used in many energy related applications. The duplex grade is considered to have outstanding mechanical properties as well as good corrosion resistance. The austenitic phase combines high ductility, even at low temperatures, with sufficient strength, and therefore such materials are applied in storage and transport of high-pressure hydrogen. During service in acidic environments large amounts of hydrogen can ingress into the microstructure and induce many changes in the mechanical properties of the steel. Embrittlement of steels by hydrogen remains unclear even though this topic has been intensively studied for several decades. The reason for that lies in the inability to validate the proposed theoretical models in the sub-micron scale. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enables a highly accurate mapping of hydrogen in the microstructure in a spatial resolution below 100 nm. In the present work ToF-SIMS was used as a main tool in order to investigate the effect of deuterium on a duplex microstructure of lean and standard DSSs during and after the electrochemical charging process. Electrochemical charging simulates the service of a component in acidic environments under conditions of cathodic protection that are commonly applied to prevent corrosion reactions. ToF-SIMS after multivariate data analysis (MVA) was combined with high resolution topographic images and electron back-scattered diffraction (EBSD) data to characterize the structural changes. It was observed that the ferritic phase was affected almost identical in all steels whereas in the austenitic phase significant differences were obtained in the lean duplex in comparison to the standard DSS. The obtained results have been compared to similar investigations on a AISI 304L austenitic stainless steel. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure and the resulted phase transformation. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgien DA - 29.05.2018 KW - Data-fusion KW - ToF-SIMS KW - PCA KW - DSS KW - LDX KW - EBSD PY - 2018 AN - OPUS4-45094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Homann, Tobias A1 - Prager, Jens A1 - Stajanca, Pavol A1 - Habib, Abdel Karim A1 - Zauner, Michaela A1 - Sause, Markus G. R. A1 - Vergeynst, Lidewei A1 - Brunner, Andreas J. A1 - Niemz, Peter T1 - Acoustic emission testing N2 - The phenomenon of acoustic emission (AE) and fundamentals of AE testing procedures are presented. AE based failure analysis of reinforced concrete beam under bending load, steel pipe segments under bending load and wood based materials under tension load are discussed. T2 - INFRASTAR, Training Week #03 at AAU CY - Aalborg, Denmark DA - 04.06.2018 KW - Acoustic emission PY - 2018 AN - OPUS4-45147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Schaupp, Thomas A1 - Mente, Tobias T1 - Hydrogen in weld joints - An underestimated risk? - Utilization potential of gas analytics versus safety of welded components N2 - Hydrogen was once called “the versatile embrittler” [1], which summarizes very well the effect on reduction of ductility and/or toughness in technical alloys like steel. In that connection, welding is one of the most important component fabrication technologies. During welding, hydrogen can be transferred to the weld pool from manifold sources (like contaminations, residuals at the surface, etc.). As hydrogen embrittles a material, the safety of welded components with hydrogen is always a critical issue. Weld heat input causes additional changes in the microstructure like grain growth or partial dissolution of precipitates and many more. All these things influence the mechanical properties and also represent hydrogen traps. These traps decrease the hydrogen diffusion compared to the ideal lattice. The result can be so-called delayed hydrogen assisted cracking (HAC) of the weld joint due to the significantly decreased diffusivity by trapped hydrogen. This is often an underestimated risk as those cracks can appear in the weld joint even after some days! It is essential to know about hydrogen ingress during welding and the microstructure specific hydrogen diffusion. Both are depended on weld parameter influence and the chemical composition of the base material and weld metal. For that purpose, gas analytic methods like solid-state carrier gas hot extraction (CGHE) are useful tools to: (1) identify detrimental hydrogen concentrations from weld joints, (2) binding energies from hydrogen traps by thermal desorption analysis or (3) high-temperature diffusion coefficients. Those values are extremely important for welding practice in terms of recommendations on realistic hydrogen removal heat treatment (HRHT) after welding. Considering the increasing use of “digital” experiments, the data is also needed for reliable numerical simulations of HAC process or HRHT-effectiveness. The present contribution gives an overview on the influence of hydrogen on weld joints, the necessity, methods and standards for hydrogen determination (CGHE) with the aim of fabrication of safe welded and crack-free components. [1] R. A. Oriani (1987), Corrosion 43(7):390-397. doi: 10.5006/1.3583875 T2 - 20. Tagung Festkörperanalyse - FKA20 CY - Vienna, Austria DA - 01.07.2019 KW - Hydrogen KW - Welding KW - Gas analytic PY - 2019 AN - OPUS4-48402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Falk, Florian A1 - Lehmusto, J. A1 - Sobol, Oded A1 - Pint, B. T1 - Elucidation of competitive oxidation/sulfidation reactions on binary ferritic alloys N2 - Ferritic-austenitic chromia-forming alloys are frequently used as boiler tubes and heat exchanger materials for fossil-,biomass, and co-fired power plants. In all applied environments several strongly corrosive gaseous species such as CO2, SO2, SO3, H2O, O2 exist, causing materials degradation by high-temperature corrosion. The elucidation of degradation mechanisms introduced by multiple gases is challenging due to the presence of different oxidizing agents contributing to the competing reactions for oxidation, sulfurization or carburization. The degradation processes can be divided into initial stages, a transitional stage and the further proceeding steady-state oxidation reaction. Especially the long-term steady-state oxidation and further materials’ life-time are strongly dependent on the initial stages. The adsorption and absorption of the reactive species at the alloy surface and the growing oxide in the initial reaction is further influenced by dissociation and re-reactions of the gas phase molecules. To understand these mechanisms from a fundamental point of view in more detail, dedicated experiments and advanced characterization techniques on various length scale need to be applied. Real-time approaches using highly energetic synchrotron X-ray diffraction showed a high potential to enlighten competitively mechanisms by following the corrosion reactions in-situ in the environment they occur. Despite various other thin film characterization techniques, time of flight secondary ion mass spectroscopy (ToF-SIMS) is a powerful tool to visualize light atoms or labeled isotopes enabling the Differentiation between different oxidizing species. It was especially shown to be applicable in challenging atmospheres containing KCl deposits or in CO/CO2/O2 environments. The present study analyses the competing oxidation/sulfidation process in a humid atmosphere on two ferritic alloys with 2 and 9 % in weight chromium by in situ energy dispersive X-ray diffraction (EDXRD) and comparative tube furnace exposure using S16O2 and H2 18O atmosphere. T2 - Conference on High Temperature Corrosion and Protection of Materials HTCPM 2021 CY - Online Meeting DA - 29.03.2021 KW - Oxidation KW - High Temperature Corrosion KW - Ferritic Alloys KW - SIMS KW - EDXRD PY - 2021 AN - OPUS4-52363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Hydrogen assisted cracking phenomena in duplex stainless steels elucidated by in- and ex-situ ToF-SIMS experiments N2 - In the presented research, the high potential and abilities of secondary ion mass spectrometry (ToF-SIMS) to detect and locally map the hydrogen distribution in two types of duplex stainless steels are shown. The research validates certain proposed mechanisms by combining ToF-SIMS with high-resolution scanning electron microscopy and electron-backscattered diffraction. The combination of data from several techniques on the same region was conducted in this field for the first time by applying data treatment of the ToF-SIMS raw data and data fusion approach. This powerful combination of methods allows reviewing of the occurring processes related to hydrogen assisted cracking. The step beyond the state of the art in this field was gained here by developing permeation and mechanical loading experiments within the ToF-SIMS during chemometric imaging of the hydrogen distribution in the microstructure. The research presents the necessary correlation between the hydrogen distribution and the resulted structural changes, the diffusion behavior in a duplex microstructure and stress induced diffusion of hydrogen by applying external load at the microscale. T2 - 6th WMRIF Early Career Scientist Summit CY - NPL Teddington UK DA - 18.06.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - LDX KW - EBSD KW - Data-fusion PY - 2018 AN - OPUS4-46865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - BAM’s role in materials science and hydrogen in metals: TOF-SIMS imaging N2 - Due to its low mass and high diffusivity in presence of compositional, thermal and mechanical gradients, hydrogen within a metallic microstructure can result in severe loss in ductility even at low concentrations and might lead eventually to a catastrophic and unpredictable failure of structural components during service. In this context, hydrogen mapping at the microscale is still considered among the most important challenges on the pathway towards a better understanding of the hydrogen transport and assisted cracking phenomena in metals, specifically in structural components, e.g. steels. Among the very few available techniques to localize hydrogen at the microscale, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. Based on the assumption that deuterium influence the microstructure similarly to hydrogen, in the following contribution ToF-SIMS was applied as the main technique to detect and locally map the deuterium distribution in several alloys: lean 2101 and standard 2205 duplex stainless steel (DSS), AISI 304L austenitic stainless steel and titanium 6Al-4V alloy. These alloys were selected as case studies in this work due to the wide use of them in many applications and environments which frequently provide critical conditions for hydrogen absorption and assisted degradation. The innovative design of in-situ and ex-situ experiments enabled us to elucidate the permeation, transport and trapping of deuterium in the microstructure in sub-micron resolution for the first time. In addition to the novel experimental setups, further progress was gained by applying computational multivariate data analysis (MVA) on the raw data and data fusion with high resolution structural characterization methods (scanning electron microscopy and electron back-scattered diffraction – SEM/EBSD). This combination allowed us to correlate the deuterium distribution and the influence on the microstructure. T2 - 4th Symposium on Innovative Measurement and Analysis for Structural Materials CY - Tokyo, Japan DA - 13.11.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - Austenitic stainless steel KW - Principal Component Analysis KW - Data-fusion PY - 2018 UR - https://unit.aist.go.jp/tia-co/project/SIP-IMASM/sympo/2018/index.html AN - OPUS4-46867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - Frequenzanalyse von Schallemission an einem Stahlrohr unter Biegebeanspruchung N2 - Um ein tieferes Verständnis über die Schallemission bei der Entstehung und Ausbreitung von Rissen in Stahlrohrleitungen zu erlangen, wurde ein Stahlrohr der Güte S355J2H im Vierpunkt-Biegeversuch quasistatisch bis hin zum Wanddurchbruch (Leckage) belastet und mittels Schallemissionsmessung und Gleichstrompotentialmessung überwacht. Das Rohrsegment wurde durch einen 90°- Außenumfangskerb in der Mitte der Rohrlänge definiert vorgeschädigt, um davon ausgehend ein stabiles Risswachstum zu induzieren und die Analyse von Schallemission aus Rissereignissen, die am Kerb eintraten, sicherzustellen. Für die Schallemissionsmessung wurden vier Breitbandsensoren max. 105 mm vom Kerb entfernt montiert. Die Signalaufzeichnung erfolgte kontinuierlich und schwellwertunabhängig. Für die Gleichstrompotentialmessung wurde ein Gleichstrom von 300 A eingeleitet und der Potentialabfall über dem Kerb mit fünf Sonden entlang des Kerbs gemessen. Beide Messverfahren identifizieren die Rissinitiierung sowie Veränderungen im Risswachstum. Die detektierten Schallemissionsereignisse werden, unter Berücksichtigung spektraler Eigenschaften, mit fortschreitender Belastung und Rissentwicklung analysiert. Diese Studien wurden im Rahmen des interdisziplinären Forschungsprojekts AGIFAMOR, Aging infrastructure - Faseroptisches Monitoring von Rohrleitungen, an der BAM durchgeführt. T2 - 22. Kolloquium Schallemission und 3. Anwenderseminar Zustandsüberwachung mit geführten Wellen CY - Karlsruhe, Germany DA - 27.03.2019 KW - Schallemission KW - Frequenzanalyse KW - Rissbildung in Stahl PY - 2019 AN - OPUS4-47690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria T1 - Welding of high-entropy alloys - New material concept vs. old challenges N2 - HEAs represent a relatively new class of materials. The the alloy concept is fundamentally different from the most conventional materials and alloys that are used today. Recently, the focus of HEA designs is more application-based. For that purpose, the elements of interest are carefully selected and multiple phases as well as micro-structures are deliberately adjusted. Currently, only limited attention has been paid to weldability of HEA. This encompasses possible effects on metallurgy and its influence on the desired properties. It remains open if welding causes e.g. considerable number of intermetallic phases or segregations and their effect on weld joint properties. For that reason, the scope of this study is to summarize already available studies on welding of HEAs with respect to the HEA-type, the applied welding process and its influence on the weld joint properties. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - High-entropy alloy KW - Welding KW - Review PY - 2020 AN - OPUS4-51116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction on the Base of Thermographic features in Laser Powder Bed Fusion Utilizing Machine Learning Algorithms N2 - Avoiding the formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The use of in-situ monitoring by thermographic cameras is a promising approach to detect defects, however the data is hard to analyze by conventional algorithms. Therefore, we investigate the use of Machine Learning (ML) in this study, as it is a suitable tool to model complex processes with many influencing factors. A ML model for defect prediction is created based on features extracted from process thermograms. The porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan is used as reference. Physical characteristics of the keyhole pore formation are incorporated into the model to increase the prediction accuracy. Based on the prediction result, the quality of the input data is inferred and future demands on in-situ monitoring of LPBF processes are derived. T2 - Additive Manufacturing Benchmarks 2022 CY - Bethesda, MA, USA DA - 14.08.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Machine Learning KW - Defect prediction PY - 2022 AN - OPUS4-55591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia A1 - Hilgenberg, Kai T1 - Eine moderne Qualitätsinfrastruktur: digital und vernetzt N2 - Der Vortrag stellt die Arbeiten der BAM in der Initiative QI-Digital vor, in deren Rahmen Lösungen für eine moderne und digitale Qualitätsinfrastruktur entwickelt werden. Schwerpunkt liegt auf dem zentralen Werkzeug Quality-X sowie dem Pilotprojekt "Moderne Qualitätssicherung in der Additiven Fertigung". T2 - BAM Kuratoriumssitzung CY - Berlin, Germany DA - 22.06.2023 KW - Qualitätsinfrastruktur KW - Digitalisierung KW - Quality-X KW - Additive Fertigung PY - 2023 AN - OPUS4-58121 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -