TY - RPRT A1 - Vogl, Jochen A1 - Becker, Dorit A1 - Koenig, Maren A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification Report for the Isotopic Reference Materials ERM-AE142 and ERM-EB400 N2 - Lead (Pb) isotope amount ratios are commonly used in applications ranging from archaeology and forensic sciences to terrestrial and extra-terrestrial geochemistry. Despite their utility and frequency of use, only three certified isotope amount ratio reference materials are currently available for Pb: NIST SRMs 981, 982 and 983. Because SRM 981 has a natural Pb isotopic composition, it is mainly used for correcting instrumental mass discrimination or fractionation. This means that, at present, there are no other certified isotope reference materials with natural Pb isotopic composition that could be used for validating or verifying an analytical procedure involving the measurement of Pb isotope amount ratios. To fill this gap, two new reference materials, both certified for their Pb isotopic composition, have been produced together with a complete uncertainty assessment. These new reference materials offer SI traceability and an independent means of validating or verifying analytical procedures used to produce Pb isotope amount ratio measurements. ERM-EB400 is a bronze material containing a nominal Pb mass fraction of 45 mg/kg. ERM-AE142 is a high purity solution of Pb with a nominal mass fraction of 100 mg/kg. Both materials have been specifically produced to assist analysts in verifying or validating their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). Details on the certification of these isotope reference materials are provided in this report. KW - Lead isotopic composition KW - Isotope ratio KW - Reference material KW - Mass spectrometry PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392060 SP - 1 EP - 16 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - State-of-the-art ultrasonic monitoring of concrete N2 - Ultrasonic methods are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The presentation will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with or first installations in real constructions (bridges, tunnel) will also be presented. T2 - CBIR Research Seminar, University of Technology Sydney CY - Sydney, Australia DA - 05.12.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galindo Guerreros, Julio Cesar A1 - Niederleithinger, Ernst A1 - Mackens, S. A1 - Fechner, Th. T1 - Crosshole and downhole seismics: a new quality assurance tool for jet grout columns N2 - Sealing and strengthening of the subsoil by grout injection is a major issue in the field of geotechnical engineering. One commonly applied method is jet grouting, which allows creating columns of grouted soil by eroding and mixing the in-situ soil with a thin cement suspension. A general difficulty linked with this method is in predicting the resulting column diameter and its material strength. In this paper, we illustrate the application of a newly developed non-destructive quality assurance tool used to determine the diameter of jet grout columns. This approach incorporates standard crosshole and downhole seismic measurements. To demonstrate its effectiveness, we tested the new approach within two-dimensional finite-difference numerical simulations. Additional field tests showed that this tool is also applicable in real site conditions. For this purpose, three jet grout columns were produced with different process parameters in a depth between 3 and 10 m. The evaluated diameters were within 1 and 1.5 m, slightly deviating from the previously predicted range by the jet grouting contractor. Moreover, we were able to detect the base of the columns at a 10-m depth with no significant difficulties. On the other hand, unsaturated, less compacted sands between the groundwater level and surface considerably affected the seismic data, hence complicating the detection of the top of the columns. KW - Jet grouting KW - Quality assurance PY - 2016 DO - https://doi.org/10.3997/1873-0604.2016042 SN - 1569-4445 IS - 14 SP - 493 EP - 501 PB - EAGE CY - Houton, NL AN - OPUS4-38977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Niederleithinger, Ernst T1 - State-of-the-art of Ultrasonic Monitoring of Concrete N2 - Ultrasonic methods are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as deep penetration ultrasonic echo devices, new imaging techniques, embedded transducers for permanent monitoring and sensitive data processing techniques adopted from seismology have opened new fields of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks. KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 IS - 10 SP - 15 EP - 18 AN - OPUS4-38728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - State-of-the-art of ultrasonic monitoring of concrete N2 - Ultrasonic methods are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The workshop will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with or first installations in real constructions (bridges, tunnel) will also be presented. T2 - The 8th Australian Network of Structural Monitoring Annual Workshop CY - Melbourne, Australia DA - 29.11.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in non-destructive testing and monitoring of concrete N2 - The presentation will give an overview on non-destructive testing techniques being developed at the Federal Institute for Materials Research and Testing, Germany (BAM). This includes ultrasonic methods, ground penetration radar, Laser-Induced Breakdown Spectroscopy (LIBS), infrared thermography, pile testing, sensor technology and building scanner. A focus of the talk will be ultrasonic methods, which are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The presentation will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with our first installations in real constructions (bridges, tunnel) will also be presented. T2 - CIES Research Seminar, University of New South Wales CY - Sydney, Australia DA - 13.12.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Roadmap for purity determination N2 - A Roadmap for the purity Determination of pure metallic elements is presented. The roadmap distinguishes between different approaches for the purity determination and list theindividual steps for each Approach which are necessary to successfully apply These approaches. T2 - CCQM IAWG Meeting CY - Daejeon, South Korea DA - 04.10.2016 KW - Traceability KW - Purity determination PY - 2016 AN - OPUS4-38590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Current activities to implement the technology roadmap „Process Sensors 4.0“ N2 - As presented at the NAMUR general meeting 2015, the technology roadmap "Process Sensors 4.0" identifies the necessary requirements as well as the communication abilities of such process sensors. We report on the progress of discussions in trialogue between users, software and device manufacturers as well as the research. An important key is the definition of an appropriate and uniform topology for such smart sensors, which will be driven forward in a new NAMUR AK 3.7 "smart sensors" in mutual exchange with device and software manufacturers and research institutions. T2 - NAMUR General Meeting 2016 CY - Bad Neuenahr, Germany DA - 10.11.2016 KW - Prozess-Sensoren KW - Prozess-Sensoren 4.0 KW - Prozess-Spektroskopie KW - Process analytical technology PY - 2016 AN - OPUS4-38228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kipphardt, Heinrich A1 - Maiwald, Michael T1 - High-pressure qNMR spectroscopy in condensed- and gas-phase towards determination of impurities and compositions of gas mixtures N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10 ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied petroleum gas mixtures (LPG) with high accuracy provided in constant-pressure piston cylinders. T2 - 35th Meeting of the CCQM-Gas Analysis Working Group, Workshop "Cutting edge research for gas metrology" CY - Caparica, Portugal DA - 13.10.2016 KW - Quantitative NMR spectroscopy KW - Gas-phase NMR KW - Reference gas mixtures KW - Liquefied petroleum gas PY - 2016 AN - OPUS4-37803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Ugly spectra and lousy interfaces – challenges for compact NMR spectroscopy in process control N2 - With the introduction of advanced process analytical technology, the closeness of key process variables to their limits can be directly controlled and the product can be classified or even released in real time. Compact NMR instruments can make NMR spectroscopy accessible in industrial and harsh environments for process control. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Industrie 4.0 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Smart sensors PY - 2016 AN - OPUS4-37405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Kraemer, B. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Paul, Andrea A1 - Wozny, G. A1 - Maiwald, Michael T1 - Quantitative NMR spectroscopy of technical mixtures and gases from elevated to high-pressure N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10 ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. Technical mixtures can be investigated online directly next to a process setup by using flow probes. This makes it a promising method for process analytical applications, especially during process development in laboratory and pilot plant scale. With the growing market of Benchtop devices based on permanent magnets nowadays an integration of NMR spectroscopy in an industrial environment becomes reasonable. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied gas mixtures with high accuracy provided in piston cylinders. Besides that amine gas treatment and hydroformylation in a microemulsion represent two other examples of applications in process analytical technology. These show the potential of combination of online NMR spectroscopy with other spectroscopic methods, especially during model development for data evaluation. T2 - Presentation at Statoil Research Center CY - Trondheim, Norway DA - 27.05.2016 KW - Quantitative NMR spectroscopy KW - Process analytical technology KW - Gas-phase NMR PY - 2016 AN - OPUS4-36330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Kern, Simon T1 - Field integration of benchtop NMR instruments for online monitoring and process control of a modular industrial reaction step N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 4th Practical Applications of NMR in Industry Conference (PANIC) CY - Houston, Texas, USA DA - 15.02.2016 KW - Reaction monitoring KW - Online NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354427 AN - OPUS4-35442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy of an industrial lithiation reaction step for process control N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 10. Interdisziplinaeres Doktorandenseminar Fachgruppe "Analytische Chemie" der GDCh CY - Berlin, Germany DA - 28.02.2016 KW - Online NMR Spectroscopy KW - Reaction monitoring PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354443 AN - OPUS4-35444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Levee inspection - geophysics between science, standards, reliability and budgets N2 - Numerous case histories show evidence that geophysical methods are valuable tools for levee inspection and monitoring. National and international standards and recommendations recommend the use of geophysics for a variety of tasks. However, in some cases reported have been flaws missed or false indications given. Due to the larger variety in type, size and construction of levees and the even larger variety of potential tasks and targets the success of geophysical surveys still pretty much depends on the available budget and the experience and capabilities of the clients and contractors involved. It is strongly recommended that all relevant parties agree on the detailed objectives of the survey, required accuracy and reliability of the results and any follow up measures. For the most common tasks more research and practical work using techniques as POD (probability of detection), which are well established in other fields of non-destructive testing, would be of benefit. T2 - SAGEEP 2016 CY - Denver, CO, USA DA - 20.03.2016 KW - Levee KW - Geophysics KW - Inspection PY - 2016 SP - paper levees 07, 1 EP - 4 AN - OPUS4-35705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Mooney, M. T1 - Special Issue on Geophysics for Non-destructive Testing in Civil Engineering Foreword N2 - Foreword to a special issue of "Near Surface Geophysics" on the application of geophysical techniques to non-destructive testing in civil engineering KW - geophysics non-destructive testing PY - 2016 DO - https://doi.org/10.3997/1873-0604.2016043 SN - 1569-4445 VL - 14 IS - 6 SP - 479 EP - 480 PB - EAGE CY - Houton, NL AN - OPUS4-38984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Levee inspection - geophysics between science, standards, reliability and budgets N2 - Numerous case histories show evidence that geophysical methods are valuable tools for levee inspection and monitoring. National and international standards and recommendations recommend the use of geophysics for a variety of tasks. However, in some cases reported have been flaws missed or false indications given. Due to the larger variety in type, size and construction of levees and the even larger variety of potential tasks and targets the success of geophysical surveys still pretty much depends on the available budget and the experience and capabilities of the clients and contractors involved. It is strongly recommended that all relevant parties agree on the detailed objectives of the survey, required accuracy and reliability of the results and any follow up measures. For the most common tasks more research and practical work using techniques as POD (probability of detection), which are well established in other fields of non-destructive testing, would be of benefit. T2 - SAGEEP 2016 CY - Denver, CO, USA DA - 20.03.2016 KW - Levee KW - Inspection KW - Geophysics PY - 2016 AN - OPUS4-35707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Bearce, R. A1 - Mooney, M. A1 - Galindo Guerreros, Julio Cesar A1 - Mackens, S. A1 - Fechner, T. T1 - Innovative seismic and resistivity tools for determining the diameter of jet grouting columns N2 - Jet grouting is used for soil improvement, foundation support and groundwater low control all over the world. It is well accepted and subject of standardization in many countries. However, some issues with the method remain. As the grout columns are produced in the subsurface without visual control in an often inhomogeneous soil, the prediction of the column’s diameter is still a challenge. All methods applied so far have their limitations. The approach presented in this study is twofold. At Colorado School of Mines a resistivity probe has been developed, which is pushed into the fresh grout directly after production. ERT sections are measured and inverted. Given some background information is available, the diameter of the columns can be evaluated. At BAM the focus has been on post-production investigations using seismic borehole methods. After hardening of the concrete seismic waves are sent through the column downhole (sensors placed in a casing in the column’s axis, source on top) and crosshole (source and sensor in boreholes on opposite sides of the column). We have developed a scheme to evaluate the diameter of the column based on travel time measurements without calibration. As this method is eventually more time and cost intensive we assume its application mainly for test columns. These are casted and dug out for visual inspection to determine appropriate grouting parameters. Our method would replace the often very cost intensive visual inspection. Both approaches have been tested at three test columns produced at BAM’s test site at Horstwalde, Germany and on an actual constructions site. Both methods have been in good agreement with the diameters predicted by the jet grouting contractors, which were confirmed in one case by mechanical measurements. T2 - SAGEEP 2016 CY - Denver, CO, USA DA - 20.03.2016 KW - Jet grouting KW - Diameter KW - Quality assurance KW - Seismic PY - 2016 AN - OPUS4-35708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Applicability of CCQM-P149 to support CMCs N2 - The presentation describes the limitations of CCQM-P149 to be used for supporting CMCs and it gives possibilities and applications where CCQM-P149 can provide additional Support. T2 - CCQM IAWG Meeting CY - Daejeon, South Korea DA - 04.10.2016 KW - CCQM KW - CMC KW - Purity assessment PY - 2016 AN - OPUS4-38586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Applicability of CCQM-P149 to support CMCs N2 - CCQM-P149 is an attempt to obtain a snapshot on actual procedures the NMIs and DIs within CCQM-IAWG applied to the purity characterization of their “fit for purpose” elemental Standards. This presentation describes how the results of CCQM-P149 may be used to underpin calibration and measurement capabilities being claimed in the BIPM database. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - metrology KW - purity KW - traceability PY - 2016 AN - OPUS4-36064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Advances in pile integrity testing N2 - For decades, the low-strain impact integrity testing using a hammer blow is well established as a method of quality assurance for various pile types. However, this method has its limitations. Our research and development focuses on improving the excitation signal using a shaker system in contrast to the standard hammer method. Another approach is to increase the amount of sensors used during testing. The purpose is to identify the direction of wave propagation which gives advantages under difficult conditions, such as piles below structures. Pile integrity testing (PIT) using a shaker system was performed on two 11 m long piles of 90 cm in diameter. While one pile was intact, the other one showed a flaw at approx. 3.5 m below pile top, which was confirmed by standard PIT in 2012. A logarithmic sweep between 500 Hz and 1 KHz of 0.1 s was used as the input signal, being vertically injected into the pile. Prior to that, simulations on similar pile geometries showed that the depth of the pile toe as well as flaws within the pile can be extracted by applying regularized deconvolution. The result is the impulse response in the time domain. The application of deconvolution on the measured signals shows that it is possible to identify the pile length but it is more difficult to clearly extract the flaw’s position in the pile. Additional digital signal processing techniques and the improvement of the regularized deconvolution method as well as the experimental setup need to be investigated. Another way to improve the PIT method is to use a multichannel sensor arrangement. By arranging several accelerometers vertically along the accessible part of the pile shaft, it is possible to distinguish between downward and upward traveling waves. Furthermore, it is possible to estimate the unknown wave speed, which gives the possibility of more accurate pile length calculations. The method was evaluated successfully during a measurement campaign of a slab foundation with subjacent piles. In 20 of 28 cases the pile length could be detected accurately. KW - Pile integrity testing KW - Pile length KW - CEFIT KW - Deconvolution KW - Simulation PY - 2016 UR - http://nsg.eage.org/publication/publicationdetails/?publication=86879 SN - 1569-4445 SN - 1873-0604 VL - 14 IS - 6 SP - 503 EP - 512 PB - EAGE Publications AN - OPUS4-37837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - IDMS Training N2 - Based on its proven records especially in reference material certification, isotope dilution mass spectrometry (IDMS) is considered as one of the most powerful and most accurate methods for determining amounts of substance. Contrary to other calibration approaches, IDMS does not directly suffer from long-time changes or drifts in instrument sensitivity. Moreover, provided isotopic exchange between the sample and spike is ensured, losses of analyte do not affect the analytical result. Both advantages are based on the fact that IDMS only requires isotope ratio measurements and isotope ratios are largely unaffected by instrumental drift, setup or by matrix, unless an isobaric interference is present. The Consultative Committee for Amount of Substance (CCQM), the world's highest institution for metrology in chemistry, considers IDMS as the most important “Primary Method of Measurement” for amount determination. The total combined uncertainty, according to ISO and EURACHEM guidelines, can easily be calculated via the IDMS equations. Applying it correctly, IDMS has the potential to be a primary method of measurement yielding SI traceable values in the most direct way with combined uncertainties significantly smaller than obtainable by other methods. In general it can be stated that IDMS is the most important reference method for elemental and elemental species analysis, offering highest accuracy and precision or smallest measurement uncertainties, when properly applied. Thus IDMS represents by far the best suited reference method for RM characterisation. Due to its universal applicability IDMS offers sufficient potential to follow future needs in analytical chemistry as well as in the RM sector. This presentation will demonstrate the basic principle of IDMS and will show its Pros and Cons as well as its pitfalls. Possible sources of errors and bias are mentioned and correction models will be discussed. Notice will be given to metrological aspects such as traceability and uncertainty. Differences in the application of thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry are discussed as well as differences between different types of mass spectrometers. This will be illustrated by practical examples from various fields. T2 - Workshop and practical training on isotope dilution mass spectrometry CY - Berlin, Germany DA - 22.02.2016 KW - Isotope dilution mass spectrometry KW - Primary method of measurement KW - Certification PY - 2016 AN - OPUS4-40029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Nikolic, D. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zon, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Zan, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Jacimovic, R. A1 - Gazevic, L. T1 - Matrix reference materials for environmental analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PFOS, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives, need strong support in order to establish a quality system. It is necessary to provide appropriate calibrators i.e. matrix CRMs relates to the unique sample matrices representing typical samples in the geomorphological and anthropological sense. In addition to that, bearing in mind the complexity and instability of environmental samples, it is very difficult to obtain appropriate referents materials with no local providers. Our project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34. Our project will have an impact on environmental monitoring in the partnering countries and on the scientific community, who will use the newly developed reference materials. Furthermore, partners will develop strategies for producing new CRMs either on their own or in cooperation. This will lead to regional CRM producers serving scientific and official laboratories. T2 - 2nd International Congress of Chemists and Chemical Engineers of Bosnia and Herzegovina CY - Sarajevo, Bosnia and Herzegovina DA - 21.10.2016 KW - CRM KW - Environmental analysis KW - Quality system PY - 2016 AN - OPUS4-40028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Pech, Anja A1 - Horn, Wolfgang A1 - Jann, Oliver T1 - Analysis of very volatile organic compounds (VVOC) with thermal desorption GC-MS N2 - Most VVOC were rarely considered in the evaluation of construction products. (Salthammer, 2014) In Germany this will change because the latest version of the German AgBB scheme for health evaluation (2015) now include VVOC, e.g. ethyl acetate and ethanol. In this study selected compounds were tested with the procedure described in ISO 16017 and a method for measuring VVOC with thermal desorption was developed. Three different adsorbents Tenax TA, Carbograph 5TD and Carbopack X were tested to analyse VVOC according to ISO 16017. For the tested VVOC, Carbograph 5TD showed the best results under the chosen analytical conditions. T2 - Indoor Air 2016, The 14th international conference of Indoor Air Quality and Climate CY - Gent, Belgium DA - 03.07.2016 KW - Thermal desorption KW - VVOC KW - Carbograph 5TD KW - Carbopack X PY - 2016 AN - OPUS4-37037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schott, M. A1 - Szczerba, Wojciech A1 - Posset, U. A1 - Vuk, A.S. A1 - Beck, M. A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Kurth, D. G. T1 - In operando XAFS experiments on flexible electrochromic devices based on Fe(II)-metallo-supramolecular polyelectrolytes and vanadium oxides N2 - Flexible electrochromic devices (ECDs) based on Fe(II)-metallo-supramolecular polyelectrolytes (Fe-MEPE) and vanadium oxide are studied in operando by means of x-ray absorption fine structure (XAFS) spectroscopy. The ECDs are blue-purple in the colored state at 0.0 V and become light yellow when a voltage of 1.6 V is applied. The XAFS studies at the K-edge of Fe(II) reveals that the absorption edge is shifted toward higher energies by 1.8 eV in the transparent state. Comparison of two different ECDs and different charge cycles demonstrates the reversibility and repeatability of the process. We attribute the shift to a charge transfer and a change of oxidation state of the ions from Fe2+ to Fe3+. The transition is not accompanied by a noticeable structural change of the octahedral coordination geometry as confirmed by analysis of the extended x-ray absorption fine structure (EXAFS) data. (C) 2015 Elsevier B.V. All rights reserved. KW - Metallo-supramolecular polyelectrolytes KW - Vanadium oxide KW - Electrochromism KW - Electrochromic device KW - Cyclic voltammetry KW - XAFS PY - 2016 DO - https://doi.org/10.1016/j.solmat.2015.10.015 SN - 0927-0248 VL - 147 SP - 61 EP - 67 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-35251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Kästner, Claudia A1 - Hansen, Ulf A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Artificial digestion of aluminium-containing nanomaterials and their effects on the gastrointestinal tract in vitro N2 - Although aluminium is one of the most common elements in the biosphere, up to now little is known about its impact on human health. aluminium and its chemical derivatives are highly abundant in food, food contact materials and consumer products. Humans are exposed to aluminium via the gastrointestinal tract (GI tract). Exposition can change substantially due to consumer behavior since aluminium is also a compound of numerous food additives. Recently, aluminium exposition is increasingly considered to cohere with cancer and neurodegenerative disorders. Lately, due to an increasing attentiveness on this topic, limiting values for food additives have been tightened by the EFSA. However, cellular effects of aluminium and especially aluminium-containing nanomaterials, that represent a significant part of chemicals found in food products, are widely unknown and in the focus of our research activities, for example in the bilateral SolNanoTOX project. We established an in vitro simulation system of the GI tract, where nanomaterials undergo the different physiological, chemical and proteinbiochemical conditions of saliva, gastric juice and the intestine. The artificially digested nanomaterials, as well as soluble aluminium chloride as ionic control substance, were subjected to several analytical and biochemical methods to characterize their change of appearance and their cytotoxic effects on intestinal cellular models. We observed the fate of the nanomaterials during typical pH-values of saliva, gastric and intestinal juice with Dynamic light scattering measurements and ICP-MS in the single particle mode. After observable disappearance at pH 2 the particles recovered in the simulated intestinal fluid. The simulation of the GI tract, mainly the change of pH settings, can lead to a certain chemical activation of aluminium that can increase bioavailability in the intestine after oral uptake of aluminium-containing food products. In vitro assays like CTB, MTT and cellular impedance measurements showed that there were no acute cytotoxic effects measurable after a period up to 48h after incubation, comparable to undigested particles. In contrast, high amounts of aluminium ions showed synergistic effects on cell viability compared to non-digested aluminium ions. Although toxicological potential of Al ions to healthy tissue appears to be low, increased hazardous potential cannot be ruled out to pre-damaged tissue and can have a relevance in risk assessment for special consumer groups with for example chronical intestinal inflammation or dietary eating behavior combined with high exposure to Al-containing food products. T2 - 82nd Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology CY - Berlin, Germany DA - 29.02.2016 KW - Nanoparticles KW - Digestion KW - SAXS KW - Cytotoxicity PY - 2016 AN - OPUS4-36026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Burel, A. A1 - Chevance, S. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Gauffre, F. A1 - Estrela-Lopis, I. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Impact of (artificial) digestion on Al-containing nanomaterials and their physico-chemical characteristics N2 - Aluminium and its chemical derivatives are highly abundant in food, food contact materials and consumer products. Up to now little is known about its derivatization and uptake during digestion and its impact on human health. As part of the SolNanoTOX project, different aluminium species were investigated during an artificial digestion process that mimics the saliva, the stomach and the intestine regarding pH-values, duration time, chemical environment and enzymatic composition. Two different nanomaterials (Al, Al2O3) and a soluble ionic AlCl3 control were digested and investigated by different analytical methods regarding core radius, hydrodynamic diameter, agglomeration and dissolution behavior in biological media. The fate of nanoparticles during typical pH-values of saliva, gastric and intestinal juice was studied with dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and ICP-MS in the single particle mode. After disappearance at pH 2 the nanoparticles were detected again in the intestinal fluid, as measured by DLS. During all artificial digestion stages Al nanoparticles had a constant average SAXS radius. In contrast, the radii of Al2O3 nanoparticles changed concentration-dependently. Highest radii were observed in the stomach fluid while intestinal fluid was found to cause full recovery of the primary particles. Dissolution of digested nanoparticles in cell culture media showed a bimodal size distribution of primary particles and aggregates. In summary, simulation of the gastrointestinal tract, mainly the change of pH settings, has provided evidence that the bioavailability of Al is likely to increase during the passage of the gut after oral uptake of aluminium-containing food products. T2 - 8th International Nanotoxicology Congress CY - Boston, MA, USA DA - 01.06.2016 KW - Artificial digestion KW - SAXS KW - DLS PY - 2016 AN - OPUS4-36919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Aggregation and deaggregation of silver nanoparticles - what does your gut say? N2 - Due to the increasing utilization of silver nanoparticles in consumer related products, many studies focus on investigations regarding their toxicological potential. This includes investigations concerning uptake, distribution and excretion of the particles. So far, little attention was paid to changes of physical and chemical properties in the human body. During processes like digestion, the question arises whether they can pass this barrier in a nanoscale form. In this study we analytically monitored the changes in the size distribution of silver nanoparticles during an artificial digestion process with the help of small angle x-ray scattering (SAXS). Therefore, we synthesized polyacrylic acid stabilized ultra-small silver nanoparticles with a radius of 3 nm and a size distribution width of 18%. The artificial digestion process mimics the gastro-intestinal passage and simulates the oral, gastric and small intestinal conditions. Additionally, food components like oil, starch, glucose and skimmed milk powder are used to provide a preferably realistic environment. In absence of any food components the low pH initiates aggregation of the particles in the stomach. However, the particles unexpectedly stabilize in a defined cluster form with a mean radius of 12 nm. By the use of the food components oil and starch we observed that the particles are dispersed again. Now we found a bimodal size distribution of primary particles and aggregates. In contrast to that, with skimmed milk powder only a slight aggregation occurs in the stomach. In the gastric tract the particle distribution is stabilized at a mean volume weighted radius of 5 nm. Hence, skimmed milk powder acts as a colloidal stabilizer. For comparison we also used silver nitrate as a control substance. Surprisingly, we observed a formation of nanoparticles already in the saliva. During the digestion process the distribution narrows and finally in the intestine it shows a stable distribution with a mean volume weighted radius of 3 nm and a small fraction of aggregates. These results indicate that the silver nanoparticles can pass the biological barriers of the digestion process in a nanoscale form but undergo a transformation in the size distribution. However, even from pure silver nitrate nanoparticle formation can be observed. This sketches a complex mechanism in which not only food components but also silver ions cause changes in nanoparticle size and aggregation. T2 - 11th International Conference on Biological Barriers CY - Saarbrücken, Germany DA - 07.03.2016 KW - digestion KW - small-angle X-ray scattering KW - silver nanoparticles PY - 2016 AN - OPUS4-35539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Artificial Digestion of Colloidal Silver Monitored by Small-Angle X-Ray Scattering N2 - In the last decade the utilization of silver nanoparticles in consumer related products is enhanced. Therefore, many studies focus on investigations regarding their toxicological potential. This includes investigations concerning uptake, distribution and excretion of the particles. So far, little attention was paid to changes of physical and chemical properties in the human body. During processes like digestion, the question arises whether they can pass this barrier in a nanoscale form. In this study we analytically monitored the changes in the size distribution of colloidal silver during an artificial digestion process with the help of small angle x-ray scattering (SAXS). Therefore, we synthesized polyacrylic acid stabilized ultra-small silver nanoparticles with a radius of 3 nm and a size distribution width of 18%. The artificial digestion process mimics the gastro-intestinal passage and simulates the oral, gastric and small intestinal conditions. Additionally, food components like oil, starch, glucose and skimmed milk powder are used to provide a preferably realistic environment. In absence of any food components the low pH initiates aggregation of the particles in the stomach. However, the particles unexpectedly stabilize in a defined cluster form with a mean radius of 12 nm. By the use of the food components oil and starch we observed that the particles are dispersed again. Now we found a bimodal size distribution of primary particles and aggregates. In contrast to that, with skimmed milk powder only a slight aggregation occurs in the stomach. In the gastric tract the particle distribution is stabilized at a mean volume weighted radius of 5 nm. Hence, skimmed milk powder acts as a colloidal stabilizer. For comparison we also used silver nitrate as a control substance. Surprisingly, we observed a formation of nanoparticles already in the saliva. During the digestion process the distribution narrows and finally in the intestine it shows a stable distribution with a mean volume weighted radius of 3 nm and a small fraction of aggregates. These results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form but undergo a transformation in the size distribution. However, even from pure silver nitrate nanoparticle formation can be observed. This sketches a complex mechanism in which not only food components but also silver ions cause changes in nanoparticle size and aggregation. T2 - 6th International Colloids Conference CY - Berlin, Germany DA - 19.06.2016 KW - SAXS KW - Artificial digestion KW - Silver nanoparticles PY - 2016 AN - OPUS4-36888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casperson, Ralf A1 - Knöppchen, Andreas A1 - Pohl, Rainer A1 - Zimne, Lutz A1 - Bode, Johannes A1 - Hollesch, Martin T1 - Manufacturing of reference defects for NDT using low-energy EDM N2 - For non-destructive testing (NDT) appropriate reference blocks are required in order to verify and calibrate a testing procedure. At BAM a special electric discharge machining (EDM) system has been developed which is able to manufacture artificial defects having a width down to 30 μm. Especially in the case of austenitic materials conventional EDM leads to a transformation of austenite to martensite. The martensite transformation causes a higher sensitivity of electromagnetic NDT methods (e. g. eddy current testing) at the artificial defects compared to natural defects of same size. The EDM system developed at BAM uses very low energy to avoid this material transformation. A side effect of the low-energy EDM is a lower surface roughness compared to conventional EDM. The artificial defects manufactured at BAM are measured optically and delivered with a certificate. A comparison of artificial defects shows the influence of material transformation on NDT and how differently the quality of the artificial defects can be. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Reference defect KW - EDM KW - Electric discharge machining KW - Artificial defect PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365995 SN - 978-3-940283-78-8 VL - 157 SP - 1 EP - 10 PB - German Society for Non-Destructive Testing (DGZfP e.V.) CY - Berlin, Germany AN - OPUS4-36599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Cyclodextrin – ferrocene host – guest complexes on silicon oxide surfaces N2 - Research on carbohydrate based interactions with proteins, nucleic acids or antibodies has gained increased interest in the last years especially in clinical diagnosis or drug development. The efficiency of diagnostic interfaces depends upon the number of probe molecules, e.g. carbohydrates. The control of surface parameters as density and distribution of immobilized carbohydrates is essential for a reliable interaction with protein analytes. A controlled production of biomolecular interfaces can be reached by a stepwise quality control during buildup of these biointerfaces. Here, ß-amino-cyclodextrin molecules were attached to amine-reactive silicon oxide surfaces via click chemistry to construct a model biosensor surface. The amount of surface bound carbohydrates was determined indirectly after chemical derivatization with 4-(trifluoromethyl)-benzylamine (TFMBA). Moreover, these surfaces were used to form host-guest complexes of ferrocene (guest) and β-cyclodextrin (host) moieties to mimic the target binding (sensing) of the model biosensor. Surface chemical analysis of all steps during biosensor construction was performed using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Our approach widens the possibilities to generate switchable surfaces based on ß-Cyclodextrin surfaces for biosensor applications. KW - ß-amino-cyclodextrin KW - Ferrocene KW - Guest complexe KW - XPS KW - NEXAFS PY - 2016 DO - https://doi.org/10.1002/sia.5958 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 7 SP - 606 EP - 610 PB - Wiley AN - OPUS4-36856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of total sulfur in a metal matrix by ICP-IDMS: Example Cu matrix N2 - Previously on sulfur determination in metal revealed a lack of traceability and inconsistent results. Solving the problems a reference procedure for sulfur measurement in metal are required to build up a reliable reference value. In this study a procedure was developed for quantification of total sulfur at low concentration (in sub ppm level) in metal using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). The ion exchange method and complexing agent were applied in this procedure to avoid loading large amount of metal into the instrument. Adding ammonia as a complexing agent into sample solution to reduce sulfur-metal co-elute. The procedure shows high performance and it is expressed in % recovery of sulfur (> 90%) and % metal elimination (>99 %). Additionally, relative measurement uncertainties were calculated less than 1.5 % and the results are traceable directly to SI units. This study would establish as reference procedure for sulfur measurement in metal sample which fit for these purpose as follows; for certified reference material and assigned value for inter-laboratory comparison. T2 - Anwendertreffen Plasmaspektrometrie CY - Berlin, Germany DA - 22.02.2016 KW - Isotope dilution KW - Separation KW - Traceability PY - 2016 AN - OPUS4-36075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bolz, Axel A1 - Panne, Ulrich A1 - Rurack, Knut A1 - Buurman, Merwe T1 - Microfluidic paper strips for SERS analysis N2 - Surface enhanced Raman scattering (SERS) is a fast and sensitive spectroscopic method for the identification of analytes. With available portable Raman spectrometers, on-site analysis is possible. However, for on-site analysis, SERS substrates, which are cheap, easy to prepare, and simple in sample handling are necessary. Relevant analytes in the addressable concentration region for SERS are e.g. antibiotics and pesticides. Here, we present paper-based test strips for SERS analysis which are coated with silver nanoparticles. The coating was realized with different deposition methods of nanoparticle solutions. The papers were also functionalised with hydrophobic barriers to create μPADs. The strips were tested with selected analytes (e.g., adenine, rhodamine-6G) over a broad concentration range. The focus of our study lay on reproducibility and optimum SERS signal intensity. For the quantification of analytes, highly reproducible signal intensities are necessary. We have realized this reproducibility in acceptable quality. Moreover, employing intensity vs concentration calibration for the analytes, data analysis revealed a behaviour that was best described by a Langmuir isotherm, stressing the strong distance dependence of the SERS effect. For a fast and reproducible analysis of the data, a Labview program was finally compiled, which was fed with the calibration data and derived the concentration of analyte unknowns accordingly. T2 - 5. Berliner Chemie Symposium & 1. Chemie in Praxis CY - Berlin, Germany DA - 12.04.2016 KW - SERS KW - Raman KW - Paper PY - 2016 AN - OPUS4-36031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, Larissa A1 - Traub, Heike A1 - Esteban-Fernández, Diego A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Kneipp, Janina T1 - Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - Imuno-histochemical staining (IHC) of cancer biomarker on tissue sections is one of the most important analytical techniques for cancer diagnosis although standardization and quality management is tedious and differ significantly from clinic to clinic. Combining established IHC staining strategies with modern quantitative methods would increase it`s potential. We used element mass spectrometry (ICP-MS) and a new ink-jet printed internal standardization approach in combination with IHC staining. The printing strategy was utilized to improve elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after conventional IHC staining as a model system to investigate the new capabilities of this technique. T2 - European Winter Conference on Plasma Spectrochemistry 2016 CY - Tucson, Arizona, USA DA - 10.01.2016 KW - Laser Ablation KW - ICP-MS KW - Bio-Imaging PY - 2016 AN - OPUS4-36492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Glaus, Reto A1 - Panne, Ulrich T1 - Modeling and diagnostics of molecules in laser induced plasmasmodeling and diagnostics of molecules in laser induced plasmas N2 - A collisional-dominated model of a laser induced plasma will be presented which includes the coupled Navier-Stokes, state, radiative transfer, and material transport equations and incorporates plasma chemistry through the equilibrium approach based on the use of atomic and molecular partition functions. Simple chemical systems are modeled including ablation of Si, C, SiC, CaCl2 in N2 or Ar atmospheres with the formation of molecules N2, C2, Si2, CN, Cl2, SiN, SiC, CaCl, CaCl2 and their corresponding positive and negative ions. The model is used to study evolution of number densities of atomic and molecular species in the expanding plasma plume. The distribution is compared to experimental observations obtained by optical imaging and tomography. The model and experiment serve to elucidate mechanisms of molecular formation in LIPs, the topic which has recently received much attention in the LIBS community. T2 - SCIX 2016 CY - Minneapolis, USA DA - 18.09.2016 KW - Plasma diagnostics KW - Plasma physics PY - 2016 AN - OPUS4-38777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Michalik-Onichimowska, Aleksandra A1 - Warschat, Carsten A1 - Panne, Ulrich A1 - Löhmannsröben, H.-G. A1 - Riedel, Jens T1 - On-line monitoring of photoreactions within levitated droplets by LA-DBD-MS N2 - Real time monitoring of chemical reactions has become a key step in industrial processes due to constantly increasing demands on product performance and environmental compatibility. In contrast to spectroscopic methods that usually require sample pretreatment, mass spectrometry (MS) has been proven as a robust method for multicomponent analysis. As an especially demanding reaction process, we here report successfully on the entirely contactless conduction and interrogation of a chemical reaction inside an acoustically levitated microliter droplet of reaction mixture. The approach represents a proof of concept study for fast reaction optimization approaches with minimal resource consumption. The sampling is done by repeated laser desorption of small fractions of the droplets volume spread over the timescale of the reaction process. T2 - 49. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie CY - Hamburg, Germany DA - 28.02.2016 KW - Monitoring of chemical reactions KW - Acoustic levitation KW - Mass spectrometry PY - 2016 AN - OPUS4-37157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Koch, Matthias A1 - Panne, Ulrich T1 - Simulation of metabolic transformation products of pesticides by EC-LC-MS N2 - Among major food contaminants agrochemicals (including insecticides, fungicides and herbicides) are a threat for food safety in many countries. Once they entered the food chain or the environment, the parent compound can be transformed into different products by manmade and natural processes. The transformation products (TPs) might be more toxic and stable than the parent compound. In addition to this the transformation products might undergo conjugation with different compounds and/or changed to phase II metabolites. Conventional in-vivo or in-vitro methods to study phase I and II metabolism have drawbacks of long-time sample preparation and matrix complexity. Online coupling of an electrochemical cell with liquid chromatography-mass spectrometry (EC–LC–MS) is a promising technique to study metabolites, fate and transformation products of pesticides. The new approach enables to identify metabolic transformation products by oxidizing analyte of interest on the EC, separate the metabolites on HPLC and identifying them by MS. The aim of the present study is to identify/mimic pesticides phase I metabolites using electrochemical cell coupled to liquid chromatography-mass spectrometry (EC-LC-MS). Metabolic transformed products of two model compounds, fluopyram (fungicide) and chlorpyrifos (insecticide) were studied by EC upfront with MS. The results of EC-LC-MS are compared and discussed with those derived from in-vitro assays and the metabolites identified by LC-MS/MS. T2 - ISEAC39- International Conference Series on Environmental & Food Monitoring CY - Hamburg, Germany DA - 19.07.2016 KW - Metabolic transformation KW - Pesticides KW - EC-MS PY - 2016 AN - OPUS4-36953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Lehmann, C. A1 - Kästner, Claudia A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Burel, A. A1 - Chevance, S. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Gauffre, F. A1 - Estrela-Lopis, I. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Cellular effects of Al-, Ti- and Zn-containing nanomaterials on intestinal cell lines in vitro N2 - Aluminium-, titanium- and zinc-containing chemicals are highly abundant in food, food contact materials and consumer products. Physical and chemical conversion might lead to a certain amount of nanoscaled particles that can be taken up by the gastrointestinal tract. Nanospecific effects such as higher reactivity, increased surface or altered uptake can increase hazardous potential for human health. The aim of this study as part of the european SolNanoTOX project is to characterize toxicological effects of Al-, Zn- and Ti-containing nanomaterials on intestinal cell lines. While toxicological potential of zinc species has been well studied, little is known about the effects of aluminium- and titanium-species. We have performed toxicological experiments on the human intestinal cell line Caco-2 for numerous endpoints: Cellular ATP and glutathione levels, apoptosis, necrosis, vesicular uptake, oxidative stress, growth rate and cell cycle modification. While zinc-containing controls showed toxic responses, our utilized aluminium- (elementary Al, γ-Al2O3) and titanium-species (TiO2, rutile) did not. Nevertheless, we detected some differences between both different aluminium nanoparticle species and aluminium ions with regard to cell viability. We also provide strong evidence for particle-specific uptake of aluminium and titanium in the intestinal cell line Caco-2. In summary, among the different tested endpoints, Al- and Ti-containing nanomaterials did not show any toxicity in intestinal cell lines in vitro. Nevertheless, this absence of effect was not due to an absence of exposure, since particle-specific uptake was reported. Metal particle uptake over a long time might therefore be relevant for risk assessment of aluminium- and titanium-containing food products. T2 - 8th International Nanotoxicology Congress CY - Boston, MA, USA DA - 01.06.2016 KW - Artificial digestion KW - SAXS KW - Cell viability KW - Toxicity PY - 2016 AN - OPUS4-36921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Lehmann, C. A1 - Krause, B. A1 - Kästner, Claudia A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Estrela-Lopis, I. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Toxicological effects of artificially digested Al-containing nanomaterials on intestinal cell lines in vitro N2 - Although aluminium is one of the most common elements in the biosphere, little is known about its impact on human health. Since aluminium derivatives are highly abundant in food its oral uptake route is of toxicological relevance. Recently aluminium-containing nanomaterials are considered to be linked to cancer and neurodegenerative disorders. Within the frame of the european SolNanoTOX project, we therefore investigated the toxicological effects of Al-containing species in different intestinal cell lines that represent the first biological barrier for food components prior to systemic distribution. In our in vitro digestion system, nanomaterials have been exposed to different physiological, chemical and biochemical conditions characteristic for saliva, gastric juice and the intestinal fluid. In vitro toxicity assays and cellular impedance measurements demonstrated the absence of cytotoxic effects of nanoparticles during a period of 48h after incubation. This was also observed after the digestion procedure. In contrast, aluminium ions from high concentrations of AlCl3 showed larger effects on cell viability after the digestion procedure. In summary, the toxicological potential of aluminium-containing nanoparticles and ions to healthy intestinal cells appears to be low. Artificial digestion of these particles does not increase their toxic potential. Only for high doses of ionic aluminium, an increase of toxicity after artificial digestion was observed. Hence, we suggest that the release of Al ions from nanoparticles may lead to toxicity. Due to these observations, other cellular effects of Al-containing nanomaterials are required to be investigated. T2 - 8th International Nanotoxicology Congress CY - Boston, MA, USA DA - 01.06.2016 KW - Artificial digestion KW - Cytotoxicity KW - Caco-2 cells PY - 2016 AN - OPUS4-36920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Sieg, H. A1 - Meyer, T. A1 - Thünemann, Andreas A1 - Estrela-Lopis, I. A1 - Braeuning, A. A1 - Lampen, A. T1 - Core or coating material – What dictates the uptake and translocation of nanoparticles in vitro? N2 - Nanoparticle size and shape are crucial parameters regarding the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in this field additionally focuses on the particle coating material. In order to distinguish between core- and coating-related effects in nanoparticle uptake and translocation behavior, this study investigated two nanoparticles equal in size, coating and charge but different in core material. Silver and iron oxide coated with poly (acrylic acid) (PAS) were extensively characterized by TEM (transmission electron microscopy), SAXS (Small-Angle X-ray Scattering), ZetasizerTM and NanoSightTM. For uptake and transport studies the widely used human intestinal Caco-2 model in a TranswellTM-system with subsequent elemental analysis (AAS) was used. For evaluation and particle visualization transmission electron microscopy (TEM) and Ion Beam Microscopy (IBM) were conducted. Although similar in size, charge and coating material, the behavior of particles in Caco-2 cells was quite different. The internalized amount was comparable, but PAA-coated iron oxide nanoparticles were additionally transported through the cells. By contrast, PAA-coated silver nanoparticles remained in the cells. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. In summary, a core-dependent effect on nanoparticle translocation was revealed. Both the uptake and transport of nanoparticles in and through cells should be considered when discussing nanoparticle fate and safety. T2 - Eurotox 2016 CY - Seville, Spain DA - 04.09.2016 KW - Cellular uptake KW - SAXS PY - 2016 AN - OPUS4-37338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Coating-tuned catalytic activity of silver nanoparticles N2 - The use of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a variety of products, which range from textiles over children toys and dietary supplements. Therefore, research on silver in a nanoscale form becomes increasingly important for a high amount of studies. Unfortunately the results of these studies are extremely diverse and do not lead to a consistent evaluation of the toxicity of silver nanoparticles. The central problem lies in the utilization of a wide range of silver nanoparticles, which show a broad size distribution. To overcome this problem we synthesized ultra-small core-shell silver nanoparticles by an up-scaled modification of the polyol process. The particles are highly stable and show no aggregation for more than six months. Small-angle X-ray scattering (SAXS) analysis reveal a narrow size distribution of the silver cores with a mean radius of RC = 3.0 nm and a distribution width of 0.6 nm. Dynamic light scattering (DLS) provides a hydrodynamic radius of RH = 10.0 nm and a PDI of 0.09. The surface of the particles is covered with poly(acrylic acid) (PAA) forming a shell with a thickness of 7.0 nm, which provides colloidal stability lasting for more than six months at ambient conditions. It is foreseen to use these thoroughly characterized particles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. The stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. We demonstrate that the particles effectively catalyze the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. With PAA as stabilizer, the catalytic activity of (436 ± 24) L g-1 s-1 is the highest reported in literature for silver nanoparticles. GSH and BSA passivate the surface substantially resulting in lower catalytic activities of (77.6 ± 0.9) L g-1 s-1 and (3.47 ± 0.50) L g-1 s-1, respectively. The ultra-small particles were already used in the Nano Define project. Due to their small size it is possible to investigate the detection limits of different analytical techniques like electron microcopy, field flow fractionation or single particle tracking. In this project they serve as the calibration standard with the smallest radius. T2 - International summer school “Nanoscience meets Metrology” CY - Turin, Italy DA - 04.09.2016 KW - Protein coating KW - SAXS KW - Ligand exchange PY - 2016 AN - OPUS4-37352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tracking silver nanoparticles: ultra-small silver refunctionalizable with fluorescent biopolymers N2 - We report on the synthesis of ultra-small silver nanoparticles and their quantitative characterization by small-angle X-ray scattering. The size distribution was derived by utilizing a Monte-Carlo data evaluation procedure reported by Pauw et al. Mean volume-weighted sizes are 3 nm with a size distribution width of 18 %. The particles should be used as reference materials for comparison of the result of different analytical methods among which are field-flow fractionation (FFF), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA) and electron microscopy (EM). In addition further use of the particles is foreseen for comparison of studies on the toxicology of nanoparticles. Therefore the silver nanoparticles are transfunctionalized with fluorescent marked albumin (BSA-FITC) and also thoroughly characterized. With this it is possible to track silver nanoparticles and their behavior in interaction with cells. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - SAXS KW - Biological application KW - Ligand exchange KW - Toxicity PY - 2016 AN - OPUS4-37651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Möhlmann, Lennart A1 - Mull, Birte A1 - Wilke, Olaf T1 - Investigation on the photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light irradiation N2 - The photocatalytic degradation of three indoor air relevant volatile organic compounds (VOC), namely toluene, butylacetate (BuAc) and limonene was investigated both under UV and visible light using modified TiO2 as photcatalyst. The new materials feature a high reactivity under UV light and, compared to pure TiO2, a significantly enhanced reactivity under blue light irradiation for the decomposition of BuAc (up to 39% degradation). T2 - 9th European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA) CY - Straßburg, France DA - 13.06.2016 KW - Photocatalysis KW - TiO2 KW - VOC degradation KW - Air purification PY - 2016 AN - OPUS4-36824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas A1 - Kern, Simon A1 - Zientek, Nicolai A1 - Guthausen, G. A1 - Maiwald, Michael T1 - Process control with compact NMR N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction and process control. An increasing number of applications are reported. To build an interdisciplinary bridge between “process control” and “compact NMR”,we give a short overviewon current developments in the field of process Engineering such as modern process design, integrated processes, intensified processes along with requirements to process control, model based control, or soft sensing. Finally, robust field integration of NMR systems into processes environments, facing explosion protection or Integration into process control systems, are briefly discussed. KW - Prozessanalytik KW - Quantitative NMR-Spektroskopie KW - Industrie 4.0 KW - Reaction monitoring KW - Process control KW - Online NMR spectroscopy KW - Compact NMR PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-373562 UR - http://www.sciencedirect.com/science/article/pii/S0165993616300073 DO - https://doi.org/10.1016/j.trac.2016.03.016 SN - 0165-9936 VL - 83 IS - Part A / SI SP - 39 EP - 52 PB - Elsevier AN - OPUS4-37356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Ugly Spectra and Lousy interfaces – Challenges for Compact NMR Spectroscopy in Process Control N2 - With the introduction of advanced process analytical technology, the closeness of key process variables to their limits can be directly controlled and the product can be classified or even released in real time. Compact NMR instruments can make NMR spectroscopy accessible in industrial and harsh environments for process control. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Industrie 4.0 KW - CONSENS KW - Reaction Monitoring KW - Smart Sensors KW - Online NMR Spectroscopy KW - Lithiation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-373895 AN - OPUS4-37389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. Intensified continuous processes are in focus of current research. Compared to traditional batch processes, these are giving admittance to new and difficult to produce compounds, leading to better product uniformity, and dras-tically reducing the consumption of raw materials and energy. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns, and quick introduction of new products to the market. Typically, such plants have smaller scale than big size facilities for production of basic chemicals but are still capable to produce kilograms to tons of specialty products each day. Such flexible (modular) plants can be provided in the size of 20 ft freight containers and represent a promising approach by their ability of easy transfer to production sites as well as the possibility of increasing production capacity by a simple numbering-up-approach. However, full automation is a prerequisite to realize such benefits of intensified continuous production. In continu-ous flow processes steady automated measurements and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) prod-ucts. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Low field NMR spectroscopy KW - Modular production units KW - Online NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-385628 AN - OPUS4-38562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are cur-rently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Online NMR spectroscopy KW - Modular production units KW - Low field NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383646 SP - P17, 75 EP - 77 AN - OPUS4-38364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Kraemer, B. A1 - Zientek, Nicolai A1 - Paul, Andrea A1 - Kern, Simon A1 - Müller, D. A1 - Esche, E. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online NMR spectroscopy as a reference tool for model developments - Successful approaches in process analytical technology N2 - Quantitative Online NMR spectroscopy as a direct ratio method of analysis represents a perfect reference for calibration of further process analytical techniques, e.g., optical spectroscopic techniques. In this work we present a combined approach including Online NMR and Raman spectroscopy on a laboratory setup for development of suitable models for process monitoring. Therefore we investigated the absorption process of carbon dioxide in solutions of monoethanolamine, as well as the homogeneous catalyzed hydroformylation reaction of 1-dodecene taking place in an emulsion stabilized by a technical surfactant. The models for Raman spectroscopy were tested and approved during several days of operational studies of miniplant-scale setups for both mentioned applications. T2 - 4th Annual Practical Applications of NMR in Industry Conference (PANIC) CY - Houston, Texas, USA DA - 15.02.2016 KW - Online-NMR spectroscopy KW - Online-Raman spectroscopy KW - Process Analytical Technology PY - 2016 AN - OPUS4-35423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Rademann, K. A1 - Maiwald, Michael T1 - qNMR under pressure - applications on compressed and liquefied gases N2 - During the last years quantitative NMR spectroscopy has become a general method for solving complex problems in science and industry. The opportunity of a calibration-free quantification, related to a simple counting of the nuclear spins in the active volume of the spectrometer represents a key advantage comparing to other analytical techniques. With modern NMR systems detection limits in the lower ppm range on a molar basis are accessible in a reasonable time period, which makes it a promising method for purity assessment, as well as applications in metrological research. First experiments showed that qNMR is suitable for gas analysis with respect to components used for production of primary reference gas mixtures. For this a laboratory setup for high-pressure NMR experiments up to 20 MPa (2900 psi) in fluid and gas phase was built and tested. In this work we show the determination of the composition of high precision mixtures, consisting of liquid and liquefied hydrocarbons commonly supplied in floating piston cylinders. Therefore an experimental setup was developed allowing sampling, as well as circulation of the mixture within a high-pressure NMR tube by using a concentric tubing assembly. Additionally, a piston-cylinder pressure cell was designed and manufactured allowing wide-range volume displacement. Mainly intended for density variation within supercritical fluid experiments, it can also function as a compression element for further increasing of gas-pressure in the system. Equipped with liquid thermostat and a motor-powered screw drive unit it is designed to operate at pressure levels up to 60 MPa (8700 psi) and temperatures up to 130 °C. T2 - 4th Annual practical applications of NMR in industry conference (PANIC) CY - Houston, TX, USA DA - 15.02.2016 KW - Gas-phase NMR KW - High-pressure NMR KW - Liquefied gases PY - 2016 AN - OPUS4-35435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Laurain, C. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modelling of simultaneous F-19-H-1 medium-resolution NMR spectra for online reaction monitoring N2 - Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and processmonitoring. In contrast to high-resolution onlineNMR (HR-NMR),MR-NMRcan be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture fromthe reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by 1H HR-NMR (500MHz) and 1H and 19F MRNMR (43MHz) as amodel system. The parallel online measurement is realised by splitting the flow,which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for 1H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. KW - NMR KW - 1H-NMR KW - 19F-NMR KW - Medium-resolution NMR KW - Online NMR KW - Quantitative NMR KW - Reaction monitoring KW - Data processing KW - Automation KW - Process analytical technology KW - IHM KW - Indirect hard modeling KW - Chemometrics KW - PLS-R KW - Partial least squares regression PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/mrc.4216/abstract DO - https://doi.org/doi:10.1002/mrc.4216 VL - 54 SP - 513 EP - 520 PB - John Wiley & Sons, Ltd CY - Hoboken, New Jersey, USA AN - OPUS4-36135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Process analytical technology for resource analytics – The role of reference materials N2 - Resource Analytics with the help of process analytical technology and the use of online methods is becoming increasingly important for mining and processing technologies and for the recovery of raw materials from secondary raw materials. Current online analytical methods like laser-induced breakdown spectroscopy (LIBS), X-ray fluorescence analysis (RFA), or Raman spectroscopy for the characterization of primary and secondary raw materials are increasingly being used in close association with the technologies for exploration and extraction, mechanical and metallurgical processing, as well as for recycling. Because of the complex matrices such methods are a considerable challenge at the same time. The use of reference materials, which are derived from appropriate matrices, can considerably shorten calibration and method development times. As an example, the development of an online process control method for recovery of phosphorus from sewage sludge ashes is discussed. A combination of LIBS and RFA was developed for the determination of element contents in sewage sludge ashes and their products coming from a thermo-chemical reprocessing step, which removes pollutants. T2 - Analytica Conference CY - München, Germany DA - 10.05.2016 KW - Resource Analytics KW - Ressourcenanalytik KW - Prozessanalytik KW - Process Analytical Technology PY - 2016 AN - OPUS4-36043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -