TY - JOUR A1 - Olejko, Lydia A1 - Cywinski, P. A1 - Bald, Ilko T1 - An ion-controlled four-color fluorescent telomeric switch on DNA origami structures N2 - The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using Förster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter. KW - DNA origami KW - FRET KW - Photonic wire KW - G quadruplex PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-362560 DO - https://doi.org/10.1039/C6NR00119J SN - 2040-3364 SN - 2040-3372 VL - 8 IS - 19 SP - 10339 EP - 10347 PB - Royal Soc Chemistry CY - Cambridge, UK AN - OPUS4-36256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -