TY - CONF A1 - Weller, Andreas A1 - Zhang, Zeyu A1 - Slater, L. A1 - Kruschwitz, Sabine A1 - Halisch, M. T1 - Induced polarization and pore radius - a discussion N2 - Permeability estimation from spectral induced polarization (SIP) measurements is based on a fundamental premise that the characteristic relaxation time (t) is related to the effective hydraulic radius (reff) controlling fluid flow. The approach requires a reliable estimate of the diffusion coefficient of the ions in the electrical double layer. Others have assumed a value for the diffusion coefficient, or postulated different values for clay versus clay-free rocks. We examine the link between t and reff for an extensive database of sandstone samples where mercury porosimetry data confirm that reff is reliably determined from a modification of the Hagen- Poiseuille equation assuming that the electrical tortuosity is equal to the hydraulic tortuosity. Our database does not support the existence of 1 or 2 distinct representative diffusion coefficients but instead demonstrates strong evidence for 6 orders of magnitude of variation in an apparent diffusion coefficient that is well correlated with both reff and the specific surface area per unit pore volume (Spor). Two scenarios can explain our findings: (1) the length-scale defined by t is not equal to reff and is likely much longer due to the control of pore surface roughness; (2) the range of diffusion coefficients is large and likely determined by the relative proportions of the different minerals (e.g. silica, clays) making up the rock. In either case, the estimation of reff (and hence permeability) is inherently uncertain from SIP relaxation time. T2 - IP Workshop 2016 CY - Aarhus, Denmark DA - 06.06.2016 KW - Pore radius KW - Mercury intrusion capillary pressure KW - Spectral induced polarization KW - Relaxation time PY - 2016 SP - 1 EP - 4 AN - OPUS4-37004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avishai, N. A1 - Avishai, A. A1 - Hodoroaba, Vasile-Dan T1 - What is the effective geometrical collection efficiency of your XEDS detector? Routine procedure applied in a SEM laboratory N2 - In this contribution, two large-area EDS detectors were tested according to the procedure proposed by Procop et al. (2015). In a first step, the optimal working distance (WD) in the two different SEM chambers was determined by moving the sample stage in the Z direction and monitoring the count rates at a magnification of 10,000 and a field of view of 25.6 µm. The WD at which the highest intensity was measured was selected as the optimal position, corresponding to the crossover between the EDS detector optical axis and electron beam optical axis. Next the Cu Kα peak was measured at different relative EDS positions while it was partially removed from the fully inserted position. The spectrum at each location was collected for 10 sec using the highest pulse rate and intermediate current to minimize pile up effects. The ‘inverse squared normalized intensities vs. relative EDS position’ used to extract the true detector – specimen distance shows a non-linear relationship even at the minimal relative positions, which indicates shadowing due to obstruction or use of an unsuitable and/or off-centered collimator. The normalized count rates measured as a function of the EDS distances, results in a too low GCE (too low true solid angles) for both tested detectors. The source of losses of signal was shadowing caused by collimators. T2 - Microscopy & Microanalysis 2016 Meeting CY - Columbus, Ohio, USA DA - 24.07.2016 KW - EDS KW - Solid angle KW - Net effective sensor area KW - X-ray yields PY - 2016 AN - OPUS4-36982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Thickness determination of semitransparent isolated solids using the flash method and an analytical model N2 - As groundwork for thickness determination of polymeric surface protection systems for concrete, we present a method for measuring the thickness of isolated semitransparent solids using pulse thermography both in transmission and reflection configuration. An advanced analytical model by Salazar et al. capturing semitransparency is applied. After calibration with samples of well-known thickness, the unknown thickness of samples of the same material can be obtained by fitting. T2 - QIRT 2016 CY - Gdansk, Poland DA - 04.07.2016 KW - Thermography KW - Analytical model KW - Surface protection KW - Concrete KW - Semitransparency KW - Thickness KW - Flash thermography PY - 2016 AN - OPUS4-36983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Thickness determination of polymeric multilayer surface protection systems for concrete by means of pulse thermography N2 - So far, only destructive measurement techniques are available for thickness determination of polymer based surface protection systems for concrete surfaces. Pulse thermography appears to be well suited for non-destructive thickness evaluation in these systems. Here, we present first results of the development of a respective measurement and analysis procedure. Since surface protection systems consist of a number of layers, a model for the calculation of the surface temperature of a multi-layer structure on an infinite (concrete) substrate in pulse thermography setup was developed. It considers semitransparency of the upmost layer and thermal losses at the surface. It also supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. First experimental results regarding the verification of the model are presented. Funding by the Federal Ministry for Economic Affairs and Energy is gratefully acknowledged. T2 - QNDE 2016 CY - Atlanta, GA, USA DA - 17.07.2016 KW - Thermography KW - Analytical model KW - Surface protection KW - Concrete KW - Semitransparency KW - Thickness PY - 2016 AN - OPUS4-36984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeegers, G. P. T1 - Evidence for laser-induced redox reactions between added trifluoroacetate salts and substrate material during polystyrene/DCTB MALDI N2 - Polymers, such as polystyrene, have been successfully analyzed with matrix-assisted laser desorption/ionization (MALDI) through the addition of e.g. copper or silver salts. This method is often used to establish the polydispersity index of polymer blends. However, the mechanism of cation addition and the possible interactions between the added salts and the chosen target material are still points of interest. Therefore, the addition of several trifluoroacetate salts to a mixture of polystyrene and matrix on a range of different target plate materials was systematically investigated, revealing several new interesting aspects of MALDI. Polystyrene (Mw 1,920 Da) was mixed with a range of trifluoroacetate salts (Li, Na, K, Cs, Ba, Cr, Pd, Cu, Ag, Zn, Al and In, as well as trifluoroacetic acid) and analyzed with MALDI using 2 -[2E-3-4-tert-butylphenyl)- 2- methylprop-2-enylidene]ma lononitrile DCTB) as matrix on different target plate materials (chrome, copper, silver, gold, Ti90/Al6/V4, Inconel® 625, Zinc and stain less steel) to evaluate the occurrence of redox-reactions. Polystyrene/salt/matrix solutions were deposited through pneumatic-assisted spraying on microscope slide -shaped target plate insets of varying material, which, secured with copper tape, fitted a milled out structure from the original target plate. Spectra, obtained on a Bruker Autoflex I MALDI-Time -of-Flight mass spectrometer, were processed with MATLAB to obtain polystyrene-and matrix -adduct ion signal intensities for direct comparison between chosen conditions. The resulting spectra shed light on the MALDI adduct formation process and the cation-polystyrene interactions. It was found that the following cation -polystyrene adducts were formed on stainless steel: Al, Li, Na, Cu and Ag, where the yield was found to depend on the sample layer thickness and possibly the cation’s ability to form a complex with either one or two of polystyrene’s phenyl rings, based on the ligand-field and the valence bond theory. With the exception of Al, these salts also formed adducts and in case of Cu and Ag also sandwich adducts with DCTB. Some alkali salts (e.g. potassium) formed clusters rather than interacting with polystyrene or DCTB, which can be explained with the HSAB theory. Application of TFA salts on a copper surface led to copper cation formation, resulting in DCTB and polystyrene copper-adduct formation. The same effect occurred for silver substrate. In the absence of copper or silver salts, it is therefore still possible to form their respective adducts by choosing the proper alternative salt (e.g. Li, Cs, Ba, Cr) in combination with either a silver or a copper substrate surface. Incubation tests with copper beads in various salt solutions, before matrix and polystyrene addition, support that copper ions are not generated during the deposition process before the MALDI experiment is carried out, except when trifluoroacetic acid, indium and aluminium trifluoroacetate are used. For all other salts used on a copper plate, it can therefore be concluded that these copper cation forming redox-reactions are enabled by the input of laser photon energy. Furthermore, it was discovered that copper beads can successfully sequester polystyrene from the sample mixture, indicating the strong bonding of polystyrene to the copper surface. These findings support that the redox-reactions occur (almost) instantaneously with laser pulse impact at the sample-coated substrate surface. T2 - Jahrestagung der DGMS 2016 CY - Hamburg, Germany DA - 28.02.2016 KW - MALDI KW - Redox-reactions KW - Substrate KW - Cations PY - 2016 AN - OPUS4-36937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine T1 - Measuring screed moisture with EM methods – a comparison of capacitive Handheld and microwave resonator probes N2 - Measuring the moisture state of screeds is critical for floorers in order to prevent structural damages of bottom coverings. Typically destructive tests are carried out on small samples delivering only punctual information. We tested several non-destructive testing methods in terms of sensitivity in the critical low moisture range and observed substantially different drying behavior for the two tested cement based and calcium-sulphate based screed samples. Our findings are supported by moisture gradient measurements using the nuclear magnetic resonance technique. T2 - 11th Int. Conference on Electromagnetic Wave Interaction with Water and Moist Substances CY - Florence, Italy DA - 23.05.2016 KW - resonance KW - moisture KW - screed KW - microwave KW - nuclear magnetic PY - 2016 AN - OPUS4-36945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzweber, Markus T1 - Surface chemical characterization and shelf life studies of reference glycan microarrays using ToF-SIMS, XPS and fluorescence spectroscopy N2 - Covalent modification of surfaces with carbohydrates (glycans) is a prerequisite for a variety of glycomics-based biomedical applications, including functional biomaterials, glycan-arrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of surface bound carbohydrate moieties. For biomedical applications the stability over time (shelf life) of a glycan-array is a crucial factor. Basic requirements for the production of microarrays are first of all stable signals without any loss of quality. Therefore, the investigation of the shelf life for carbohydrate microarrays is an important part in the development of glycan-arrays. Motivated by the need of reliable quality control for glycan microarrays, we developed reference arrays using fluorescent model glycans. Since the long term stability of glycan microarrays is a crucial factor for their clinical application the shelf life at different storage conditions of glycan microarrays was studied in detail using the two model glycan compounds. Herein, we present a shelf life study of model glycan microarrays on epoxy modified glass surfaces over a period of 320 days. This was carried out using different analyzing techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Fluorescence Spectroscopy. To analyze and interpret the ToF-SIMS dataset the multivariate technique principal component analysis (PCA) was used. The dependence of the array´s shelf life upon storage conditions was specifically studied. T2 - SIMS Europe 2016 CY - Münster, Germany DA - 18.9.2016 KW - Glycan microarray KW - XPS KW - SIMS KW - Fluorescence spectroscopy PY - 2016 AN - OPUS4-37638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schade, U. T1 - Estimation of THz waveforms for material characterization of stratified objects N2 - The poster discusses theoretically and exemplarily the influence of the materials and experimentally selected situation on the shape and size deformation of a detected pulse signal previously reflected on a three layer sheet. T2 - 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2016) CY - Copenhagen, Denmark DA - 25.09.2016 KW - THz spectroscopy KW - Pulse reflection KW - Pulse shape analysis KW - Optical layer model PY - 2016 AN - OPUS4-37639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Schukar, Vivien T1 - Intelligent automatic validation of structure-integrated fibre optic strain sensors N2 - Identification of physical faulty fibre optic strain sensors embedded in safety-relevant structures or systems and detection of abnormal measurement data to prevent misinterpretation of critical operating parameters and misleading of management and control systems. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Fiber bragg grating KW - Magnetic field KW - Magnetostrictive metal coating KW - Self-diagnostic fiber optical sensor PY - 2016 AN - OPUS4-37642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Validation of membrane-based linear soil gas sensors – results from repetitive CO2 injection experiments performed in the field N2 - This work presents first results from repeti-tive CO2 injection experiments performed on a recently built-up 400 m² soil test field with gas injection system. The test field contains 48 membrane-based linear gas sensors that were installed in several depths of the test field. Sensors for measuring meteorological parameters (e.g., wind / rain) and the parameters soil temperature, soil moisture, and groundwater level were installed additionally. A more de-tailed description of the test field setup can be found in. A short description of the mem-brane-based linear gas sensors’ functional prin-ciple can be found in. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Distributed linear sensor KW - Gas distribution mapping and gas source localization KW - Gas storage areas KW - Membrane-based gas sensing KW - Subsurface monitoring PY - 2016 AN - OPUS4-37643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Lazik, D. A1 - Bartholmai, Matthias ED - Aulova, Alexandra ED - Rogelj Ritonja, A. ED - Emri, I. T1 - Validation of membrane-based linear soil gas sensors – results from repetitive CO2 injection experiments performed in the field N2 - This work presents first results from repetitive CO2 injection experiments performed on a recently built-up 400 m² soil test field with gas injection system. The test field contains 48 membrane-based linear gas sensors that were installed in several depths of the test field. Sensors for measuring meteorological parameters (e.g., wind / rain) and the parameters soil temperature, soil moisture, and groundwater level were installed additionally. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Distributed linear sensor KW - Gas distribution mapping and gas source localization KW - Gas storage areas KW - Membrane-based gas sensing KW - Subsurface monitoring PY - 2016 SN - 978-961-94081-0-0 SP - 174 EP - 175 CY - Ljubljana AN - OPUS4-37644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Chemical and electrochemical interaction mechanisms of metal-reducing bacteria with gold surfaces N2 - Bacterial biofilms are considered one of the salient contributing factors to the deterioration of metals and their alloys, occurring in virtually all environments and across various industrial systems. Considering the sheer magnitude of detrimental effects, it is of pertinent interest to elucidate the interaction mechanisms of sessile bacteria with metal and metal oxide surfaces to facilitate the development of efficient antifouling strategies. A common constituent of microbial communities within aquatic and sedimentary settings, the Shewanella genus consists of facultatively aerobic, Gram-negative bacterium which exhibit exceptional plasticity in respiratory capacities. During aerobic conditions, Shewanella utilizes oxygen as a terminal electron acceptor; conversely, under anaerobic conditions, it is able to undertake respiration by reducing alternative terminal electron acceptors such as oxidized metals via extracellular electron transfer mechanisms not yet thoroughly discerned. The aim of this work is to explicate the mechanisms governing the initial bacterial adhesion and subsequent biofilm formation on metallic surfaces. To investigate this dynamic interplay, a combined approach has been followed which couples surface enhanced Raman spectroscopy (SERS) with electrochemical techniques using Shewanella sp. model biofilms. Gold nano-islands deposited on thin glass slides have been chosen as inert model substrates with good uniformity and high surface enhancement factor. Furthermore, the utilization of gold as substrate material not only allowed the differentiation of the sole effect of substrate polarization on bacterial attachment but also enabled a precise adjustment of the surface chemistry and surface energy by means of surface functionalization with organothiol self-assembled monolayers. The results present the correlation of the primary settlement rate of bacteria on metallic substrates with the environmental parameters such as electrolyte composition and pH as well as surface-related properties like hydrophobicity/hydrophilicity and polarization. With the overall strategic goal of transferring this methodology to technical systems the results provide the fundamental basis for the bottom-up design of anti-fouling surfaces. T2 - Electrochemistry 2016 CY - Göslar, Germany DA - 26.09.2016 KW - Bacterial biofilms KW - Electrochemistry KW - Microbiology KW - Surface enhanced Raman spectroscopy KW - Raman spectroscopy KW - Microbiologically induced corrosion KW - Anti-fouling KW - Shewanella KW - Biocorrosion PY - 2016 AN - OPUS4-47243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Chemical and electrochemical interaction mechanisms of metal-reducing bacteria with gold surfaces N2 - Bacterial biofilms are considered one of the salient contributing factors to the deterioration of metals and their alloys, occurring in virtually all environments and across various industrial systems. Considering the sheer magnitude of detrimental effects, it is of pertinent interest to elucidate the interaction mechanisms of sessile bacteria with metal and metal oxide surfaces to facilitate the development of efficient antifouling strategies. A common constituent of microbial communities within aquatic and sedimentary settings, the Shewanella genus consists of facultatively aerobic, Gram-negative bacterium which exhibit exceptional plasticity in respiratory capacities. During aerobic conditions, Shewanella utilizes oxygen as a terminal electron acceptor; conversely, under anaerobic conditions, it is able to undertake respiration by reducing alternative terminal electron acceptors such as oxidized metals via extracellular electron transfer mechanisms not yet thoroughly discerned. The aim of this work is to explicate the mechanisms governing the initial bacterial adhesion and subsequent biofilm formation on metallic surfaces. To investigate this dynamic interplay, a combined approach has been followed which couples surface enhanced Raman spectroscopy (SERS) with electrochemical techniques using Shewanella sp. model biofilms. Gold nano-islands deposited on thin glass slides have been chosen as inert model substrates with good uniformity and high surface enhancement factor. Furthermore, the utilization of gold as substrate material not only allowed the differentiation of the sole effect of substrate polarization on bacterial attachment but also enabled a precise adjustment of the surface chemistry and surface energy by means of surface functionalization with organothiol self-assembled monolayers. The results present the correlation of the primary settlement rate of bacteria on metallic substrates with the environmental parameters such as electrolyte composition and pH as well as surface-related properties like hydrophobicity/hydrophilicity and polarization. With the overall strategic goal of transferring this methodology to technical systems the results provide the fundamental basis for the bottom-up design of anti-fouling surfaces. T2 - Electrochemistry 2016 CY - Göslar, Germany DA - 26.09.2016 KW - Biofilms KW - Electrochemistry KW - Biocorrosion KW - Surface enhanced Raman Spectroscopy KW - Bacteria KW - Microbiological induced corrosion KW - Microbiology PY - 2016 AN - OPUS4-47246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kastanias, Elaine A1 - Özcan Sandikcioglu, Özlem T1 - Chemical and electrochemical interaction mechanisms of metal-reducing bacteria with gold surfaces N2 - Bacterial biofilms are considered one of the salient contributing factors to the deterioration of metals and their alloys, occurring in virtually all environments and across various industrial systems. Considering the sheer magnitude of detrimental effects, it is of pertinent interest to elucidate the interaction mechanisms of sessile bacteria with metal and metal oxide surfaces to facilitate the development of efficient antifouling strategies. A common constituent of microbial communities within aquatic and sedimentary settings, the Shewanella genus consists of facultatively aerobic, Gram-negative bacterium which exhibit exceptional plasticity in respiratory capacities. During aerobic conditions, Shewanella utilizes oxygen as a terminal electron acceptor; conversely, under anaerobic conditions, it is able to undertake respiration by reducing alternative terminal electron acceptors such as oxidized metals via extracellular electron transfer mechanisms not yet thoroughly discerned. The aim of this work is to explicate the mechanisms governing the initial bacterial adhesion and subsequent biofilm formation on metallic surfaces. To investigate this dynamic interplay, a combined approach has been followed which couples surface enhanced Raman spectroscopy (SERS) with electrochemical techniques using Shewanella sp. model biofilms. Gold nano-islands deposited on thin glass slides have been chosen as inert model substrates with good uniformity and high surface enhancement factor. Furthermore, the utilization of gold as substrate material not only allowed the differentiation of the sole effect of substrate polarization on bacterial attachment but also enabled a precise adjustment of the surface chemistry and surface energy by means of surface functionalization with organothiol self-assembled monolayers. The results present the correlation of the primary settlement rate of bacteria on metallic substrates with the environmental parameters such as electrolyte composition and pH as well as surface-related properties like hydrophobicity/hydrophilicity and polarization. With the overall strategic goal of transferring this methodology to technical systems the results provide the fundamental basis for the bottom-up design of anti-fouling surfaces. T2 - Electrochemistry 2016 CY - Goslar, Germany DA - 26.09.2016 KW - Biofilms KW - Electrochemistry KW - Microbiology KW - Bacterial Extracellular Electron Transfer Mechanisms KW - Surface Enhanced Raman Spectroscopy KW - Spectroelectrochemical Techniques KW - Biocorrosion PY - 2016 AN - OPUS4-47249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao T1 - Determination of chromatographic parameters of a miniaturized AF4 channel and its comparison with a conventioanl AF4 channel N2 - The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP) using Asymmetrical Flow Field-Flow Fractionation (AF4) was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD) and limit of quantification (LOQ) obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis. T2 - BAM Seminar CY - Berlin, Germany DA - 31.08.2016 KW - Nanoparticles separation asymetrical flow field flow fractionation PY - 2016 AN - OPUS4-47190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao T1 - Comparison of the separation performance of a conventional and a miniaturized AF4 channels N2 - Currently available separation channels for asymmetric flow field-flow fractionation (AF4), which results in long analysis time and solvent consumption, limits the application of AF4 in [1} the field of nanoparticle analysis . A miniaturized AF4 channel was introduced for the rapid analysis of different nanoparticle samples. UV-Vis-MALS provides the possibility to measure the particle size and molar mass and offers a powerful tool for the investigation of [2] separation performances of different AF4 channels . Our objective was to develop fast and reliable separation methods for both channels and enable a direct comparison by the corresponding chromatographic parameters. T2 - 2016 BfR PhD Retreat DA - 31.08.2016 KW - Nanoparticles separation asymetrical flow field flow fractionation PY - 2016 AN - OPUS4-47192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lisec, Jan T1 - InterpretMSSpectrum (R package to annotate mass spectra) N2 - Gas chromatography using atmospheric pressure chemical ionization coupled to mass spectrometry (GC/APCI-MS) is an emerging metabolomics platform, providing much-enhanced capabilities for structural mass spectrometry as compared to traditional electron ionization (EI)-based techniques. To exploit the potential of GC/APCI-MS for more comprehensive metabolite annotation, a major bottleneck in metabolomics, we here present the novel R-based tool InterpretMSSpectrum assisting in the common task of annotating and evaluating in-source mass spectra as obtained from typical full-scan experiments. After passing a list of mass-intensity pairs, InterpretMSSpectrum locates the molecular ion (M0), fragment, and adduct peaks, calculates their most likely sum formula combination, and graphically summarizes results as an annotated mass spectrum. Using (modifiable) filter rules for the commonly used methoximated-trimethylsilylated (MeOx-TMS) derivatives, covering elemental composition, typical substructures, neutral losses, and adducts, InterpretMSSpectrum significantly reduces the number of sum formula candidates, minimizing manual effort for postprocessing candidate lists. We demonstrate the utility of InterpretMSSpectrum for 86 in-source spectra of derivatized standard compounds, in which rank-1 sum formula assignments were achieved in 84% of the cases, compared to only 63% when using mass and isotope information on the M0 alone. We further use, for the first time, automated annotation to evaluate the purity of pseudospectra generated by different metabolomics preprocessing tools, showing that automated annotation can serve as an integrative quality measure for peak picking/deconvolution methods. As an R package, InterpretMSSpectrum integrates flexibly into existing metabolomics pipelines and is freely available from CRAN (https://cran.r-project.org/). KW - Mass Spectrometry KW - Spectra annotation KW - Software KW - R package PY - 2016 UR - https://github.com/cran/InterpretMSSpectrum/ PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-57856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -