TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Koch, Matthias A1 - Panne, Ulrich T1 - Metabolic transformation products of pesticides by electrochemical cell coupled to LC-MS (EC-LC-MS) N2 - Metabolic transformation products (TPs) of the insecticide chlorpyrifos (CPF), the new fungicide fluopyram (FLP) and the broad-spectrum herbicide, glyphosate (GLP), were studied by electrochemistry coupled to mass spectrometry (EC-MS) for the first time. Phase I metabolites of the three pesticides from rat liver in-vitro assay experiments were studied by LC-MS/MS and compared to electrochemically oxidized products from EC-MS. Known metabolites from S-oxidation, O-dealkylation and hydroxylation of the insecticide chlorpyrifos have been identified by EC-MS and simulated to in-vitro assays. Chlorpyrifos-oxon (CPF-oxon), diethylthiophosphate (DETP), 3,5,6-trichloropiridinol (TCP), diethylphosphate (DEP) and 2,3,5-trichloropyridine (TCPy) were the main EC oxidative TPs and in-vitro assay metabolites of CPF which was also reported by Choe et al.. Fluopyram was extensively converted to a number of electrochemical products including mono- and dihydroxylated derivatives and yet unidentified TPs. Rat liver microsomal assay experiments showed mainly hydroxylated metabolites of FLP which was also reported by the European Food Safety Agency (EFSA). Aminomethyl phosphonic acid (AMPA) was the main TP of glyphosate detected from both EC-MS analysis and in-vitro assay tests. A number of TPs of CPF, FLP and GLP have been identified by electrochemistry online mass spectrometry and compared to in-vitro assays. Using electrochemistry upfront MS enables fast and matrix free prediction of metabolic pathways, transformation products and/or fate of pesticides. Further studies will focus on structural characterization of detected compounds, phase II metabolites and investigation of real samples. T2 - 9th European Conference on Pesticides and Related Organic Micropollutants in the Environment: 15th Symposium on Chemistry and Fate of Modern Pesticides CY - Santiago de Compostela, Spain DA - 04.10.2016 KW - EC-MS KW - Pesticides KW - Transformation products (TPs) KW - Metabolites PY - 2016 AN - OPUS4-37707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lingott, Jana A1 - Lindner, Uwe A1 - Telgmann, Lena A1 - Esteban-Fernández, Diego A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry N2 - The uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). KW - Gadolinium-uptake KW - Speciation KW - HILIC KW - ICP-MS PY - 2016 DO - https://doi.org/10.1039/c5em00533g SN - 2050-7887 VL - 18 IS - 2 SP - 200 EP - 207 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, Larissa A1 - Traub, Heike A1 - Esteban-Fernández, Diego A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Kneipp, J. T1 - Novel strategies for standardization and calibration in Laser Ablation ICP-MS N2 - Elemental imaging of biological samples (bio-imaging) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatially resolved information on element distribution (qualitative and quantitative) in thin sections of biological samples. By rastering with a laser across the sample, a two-dimensional image of the elemental distribution can be reconstructed that shows the relative intensities of the respective elements. However the method is hampered by a lack of internal standards and quantification concepts, which will be discussed in this lecture in more detail. In liquid analysis the internal standard is used for drift correction and calibration and thus it is required that the standard should have similar physical and chemical properties similar to the analyte element during the pneumatic nebulization process, the transport, ionization and transmission into the ICP-MS. In laser ablation it should correct additionally for differences in the ablation process by laser instabilities or changes of sample properties to compensate variations or drift effects during the LA process. T2 - SALSA Lecture CY - Berlin, Germany DA - 14.06.2016 KW - Standardization KW - Calibration KW - LA-ICP-MS PY - 2016 AN - OPUS4-37164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sötebier, Carina A1 - Kutscher, D. J. A1 - Rottmann, L. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Application of ICP-MS in the single particle mode and isotope dilution analysis on the example of silver nanoparticles N2 - Due to its simplicity, speed and ability to obtain a particle number size distribution, single particle ICP-MS (spICP-MS) has emerged as an important tool for the analysis of nanoparticles (NPs). However, when NPs are suspended in a complex, unknown solution, matrix effects can occur affecting the instrument’s sensitivity. As a result, an over- or underestimation of the particle size is possible. In this work, a proof-of-concept study of the combination of isotopic dilution analysis (IDA) and spICP-MS compensating for possible matrix effects is presented. As an example, an isotopically enriched 109Ag standard solution was added to silver NPs (Ag NP) suspensions. Different NP suspensions with mean particle diameters between 30 and 80 nm were chosen. The mixtures were analyzed using a quadrupole ICP-MS instrument. Both Ag isotopes (107Ag and 109Ag) were monitored during one experiment. The result show a good agreement with the diameters obtained using conventional spICP-MS. In a second step, the Ag NPs were suspended in a simulated seawater matrix. Using conventional spICP-MS, a great reduction in the signal intensities and consequently in the particle sizes, was monitored. The application of the IDA-spICP-MS approach on these samples was able to obtain similar diameters compared to the samples without matrix. T2 - Anwendertreffen Plasmaspektrometrie CY - Berlin, Germany DA - 22.02.2016 KW - Single particle ICP-MS KW - Silver nanoparticles KW - Isotope dilution analysis PY - 2016 AN - OPUS4-35627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Bettmer, J. A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Characterization of Ag nanoparticles: limitation and advantages of field-flow fractionation N2 - Silver nanoparticles (Ag NPs) are widely used in consumer products due to their excellent antibacterial properties. Their broad application has led to a variety of recent regulation on their use and labelling. Thus, a highly specific analytical method for their characterization and quantification is needed. Due to their large separation range, field-flow fractionation (FFF) techniques are repeatedly applied for the analysis of NP. Limitations of FFF include quantification, sample loss and insufficient recovery rates. Another challenge can be non-ideal elution behavior of particles in complex and unknown matrices. The possible sources for sample losses of Ag NP have been studied using an asymmetric flow FFF (AF4) in combination with inductively coupled plasma mass spectrometry (ICP-MS). The influence of different parameters, for example the sample concentration, on the recovery rates and sample loss has been investigated. Using laser ablation ICP-MS, the Ag deposition on the membrane was located and quantified. Our results identified ionic silver as the main sources of sample loss. These results can be useful for further method improvement. However, when a Ag NP sample containing an unknown complex matrix is analyzed, FFF method optimization is challenging as the sample might show a shift in the retention times and lower recovery rates. In this case, ICP-MS experiment in the single particle mode (sp-ICP-MS) can be a useful addition to the FFF measurement. Here, upon assumption of spherical particles, the geometric diameters can be calculated. This fast and easy approach can be helpful in order to interpret the FFF fractograms and advice the FFF method optimization process. T2 - 18th International Symposium on Field- and Flow-Based Separations CY - Dresden, Germany DA - 22.05.2016 KW - Silver KW - Nanoparticles KW - Field-flow fractionation KW - ICP-MS PY - 2016 AN - OPUS4-36352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Antje Jutta A1 - Techritz, Sandra A1 - Panne, Ulrich A1 - Jakubowski, Norbert A1 - Haase, A. A1 - Müller, Larissa T1 - Simple and fast metal staining procedures for identification and characterization of single cells via laser ablation ICP-MS N2 - Biological systems exhibit a very high complexity, because they consist of various cell populations showing heterogenic characteristics. Therefore the individual analysis of single cells is important to understand cellular processes as well as their function in a cell system. Especially investigation in the question about what is biological variability and what is a substantial difference between two cells of the same type (which might lead to dysfunction or disease) is of high interest. Today improved spatial and temporal resolution enable the use of laser ablation inductively coupled mass spectrometry (LA-ICP-MS) for element microscopy of single cells. Next to the characterization of natural trace elements the introduction of artificial metal labels into cells is of high interest. Element labeling of cell compartments and/or proteins allows its simultaneous analysis and localization within a cell via element microscopy. Two fast and simple metal staining procedures of adherent cells for identification of single cells via LA-ICP-MS at sub micrometer resolution are presented. Two labeling reagents were selected which were already described in literature for applications around protein and cell analysis. An Iridium-intercalator is utilized to stain the cell nuclei whereas the whole cell is stained by maleimido-mono-amide-DOTA-complexes (mDOTA) loaded with lanthanide(III) isotope ions. The metal staining procedures allow the visualization of single cells by element microscopy independent of a superposition of analyte’s 2D element intensity profile with a prior taken bright field image of the sample. The applicability was shown on an actual question in nano-toxicology (the cellular uptake of nanoparticles). T2 - 25. ICP-MS Anwendertreffen CY - Siegen, Germany DA - 12.09.2016 KW - Metal staining procedures KW - Single cell analysis KW - Bioimaging PY - 2016 AN - OPUS4-37979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Antje A1 - Müller, Larissa A1 - Techritz, Sandra A1 - Jakubowski, Norbert A1 - Haase, A. A1 - Panne, Ulrich T1 - Simple and fast metal staining procedures for identification of single cells via Laser Ablation ICP-MS N2 - Biological systems exhibit a very high complexity, because they consist of various cell populations showing heterogenic characteristics. Therefore the individual analysis of single cells is important to understand cellular processes as well as their function in a cell system. Especially investigation in the question about what is biological variability and what is a substantial difference between two cells of the same type (which might lead to dysfunction or disease) is of high interest. Today improved spatial and temporal resolution enable the use of laser ablation inductively coupled mass spectrometry (LA-ICP-MS) for element microscopy of single cells. Next to the characterization of natural trace elements the introduction of artificial metal labels into cells is of high interest. Element labeling of cell compartments and/or proteins allows its simultaneous analysis and localization within a cell via element microscopy. Two fast and simple metal staining procedures of adherent cells for identification of single cells via LA-ICP-MS at sub micrometer resolution are presented. An Iridium-intercalator is utilized to stain the cell nuclei whereas the whole cell is stained by maleimido-mono-amide-DOTA-complexes (mDOTA) loaded with lanthanide(III) isotope ions. The metal staining procedures allow the visualization of single cells by element microscopy independent of a superposition of analyte’s 2D element intensity profile with a prior taken bright field image of the sample. T2 - EWLA 2016 CY - Ljubljana, Slovenia DA - 12.07.2016 KW - bioimaging KW - single cell analysis PY - 2016 AN - OPUS4-37077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bolz, Axel A1 - Panne, Ulrich A1 - Rurack, Knut A1 - Buurman, Merwe T1 - SERS microfluidic paper-based analytical devices N2 - The fast identification and quantification of analytes in the field of food safety or environmental analysis is difficult. Surface enhanced Raman scattering (SERS) is an analytical method which can be used simultaneously for the rapid identification and concentration determination of trace analytes,[1,2] usually covering a large dynamic range from nanomolar up to molar concentrations. The identification of the molecules is accomplished through the specific fingerprint of a molecule’s Raman spectrum. For facile and straightforward SERS measurements, we present here a combination of paper-based SERS test strips with microfluidic systems on paper as a microfluidic paper-based analytical device (μPAD). The SERS μPAD is thus principally suited for cheap, fast, non-destructive, label-free and portable detection of analytes. In this system basically, the use of the microfluidic structured paper increases the sensitivity and suppresses background signals of the SERS assay. Deposition of the SERS substrate on the test strips is simple and relies on an inkjet printer. For the optimization of the reproducibility and intensity of the SERS signal, we tested different nanoparticles, different numbers of print cycles and different paper types. The nanoparticle solutions used in the μPAD preparation were gold and silver nanoparticle solutions. The paper types were cellulose and glass fiber. SERS arrays were prepared by printing and compared to arrays prepared by spraying. The optimized μPAD was used for the identification and quantification of pure analyte solutions (e.g., adenine) and mixtures of compounds, the concentration series following Langmuir isotherms. Relevant analytes in the field of food safety are antibiotics and pesticides. We apply the SERS microfluidic paper-based analytical devices for the detection of antibiotics (enoxacin, enrofloxacin) and pesticides. T2 - Europtrode XIII CY - Graz, Austria DA - 20.03.2016 KW - SERS KW - Paper PY - 2016 AN - OPUS4-35702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - Löhmannsröben, H.-G. T1 - Real time monitoring of photoreactions performed within levitated droplets by LA-DBD-MS N2 - The upscaling from small scale academic reactors to large industrial processes typically suffers from a large change in surface-to-volume ratio. A promising approach is the general avoidance of surfaces as in levitated droplet techniques. However, up to now, no mass spectrometric interface for online reaction monitoring in levitated droplets has been provided. As model reaction the photoinitiated thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was studied. A droplet of 5 µL reactand solution was provisioned into an acoustic trap aligned lateral to the MS inlet. Contactless sampling by laser ablation (LA) is followed by dielectric barrier discharge (DBD) postionization. The latter is needed to address non polar reaction partners. T2 - 21st International Mass Spectrometry Conference CY - Toronto, Canada DA - 20.08.2016 KW - Monitoring of chemical reactions KW - Acoustic levitation KW - Laser ablation KW - Mass spectrometry PY - 2016 AN - OPUS4-37159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzweber, Markus A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Kamalakumar, A. A1 - Ivanov-Pankov, S. A1 - Blanchard, V. A1 - Weigel, W. A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Surface chemical characterization and shelf life studies of reference glycan microarrays using ToF-SIMS, XPS and fluorescence spectroscopy N2 - Covalent modification of surfaces with carbohydrates (glycans) is a prerequisite for a variety of glycomics-based biomedical applications, including functional biomaterials, glycan-arrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of surface bound carbohydrate moieties. For biomedical applications the stability over time (shelf life) of a glycan-array is a crucial factor. Basic requirements for the production of microarrays are first of all stable signals without any loss of quality. Therefore, the investigation of the shelf life for carbohydrate microarrays is an important part in the development of glycan-arrays. Motivated by the need of reliable quality control for glycan microarrays, we developed reference arrays using fluorescent model glycans. Since the long term stability of glycan microarrays is a crucial factor for their clinical application the shelf life at different storage conditions of glycan microarrays was studied in detail using the two model glycan compounds. Herein, we present a shelf life study of model glycan microarrays on epoxy modified glass surfaces over a period of 320 days. This was carried out using different analyzing techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Fluorescence Spectroscopy. To analyze and interpret the ToF-SIMS dataset the multivariate technique principal component analysis (PCA) was used. The dependence of the array´s shelf life upon storage conditions was specifically studied. T2 - SIMS Europe 2016 CY - Münster, Germany DA - 18.9.2016 KW - Glycan microarray KW - XPS KW - SIMS KW - Fluorescence spectroscopy PY - 2016 AN - OPUS4-37638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Telgmann, L. A1 - Richter, Silke A1 - Jiang, W. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Speciation of Gd contrast agents using HILIC-ICP-MS N2 - Hydrophilic interaction chromatography (HILIC)coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10–20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area. T2 - Anwendertreffen Plasmaspektrometrie CY - Berlin, Germany DA - 22.02.2016 KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasmamass spectrometry (ICP-MS) KW - Internal standard KW - Berlin tap water PY - 2016 AN - OPUS4-35875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bolz, Axel A1 - Panne, Ulrich A1 - Rurack, Knut A1 - Buurman, Merwe T1 - Paper-based SERS test strips N2 - For the non-destructive chemical analysis of organic compounds, several different methods such as NMR, UV-vis absorption, IR, Raman, or fluorescence spectroscopy are available. However, all available methods have some restrictions such as the necessity of a large sample amount, interferences in the presence of water, or overlapping signals from the analytes or matrix. Surface enhanced Raman scattering (SERS) allows to observe analytes directly without labelling in low concentrations in aqueous solutions and to identify them by their spectral fingerprint. Therefore, in this work we use SERS as a detection method for different analytes in low concentrations in combination with paper-based test strips as SERS substrates and for sample preparation. We present a spray method for the preparation of SERS test stripes.[1] With this spray method, nanoparticle solution was deposited on cellulose and glass fibre paper as SERS substrate. The prepared paper-based test strips were tested with classical SERS reporter molecules, e.g. rhodamine 6G, 4-aminothiophenol, and adenine. For the quantification of analytes, highly reproducible signal intensities are necessary, which can be realized with the test strips in acceptable quality. Moreover, employing intensity vs concentration calibration for the analytes, data analysis revealed a behaviour that was best described by a Langmuir isotherm, stressing the strong distance dependence of the SERS effect. For an easier identification of analytes in a mixture of compounds, the paper-based test strips were functionalised with hydrophobic barriers by wax printing. With these microfluidic paper-based analytical devices (µPAD) the sample mixture can be separated by the chromatographic effects of the paper and the different analytes can be separately detected and identified by SERS. [1] A. Bolz, U. Panne, K. Rurack, M. Buurman, Glass fibre paper-based test strips for sensitive SERS sensing, Anal. Methods, 2016, 8, 1313-1318. T2 - International RamanFest 2016 CY - Berlin, Germany DA - 19.05.2016 KW - SERS KW - Raman KW - Paper PY - 2016 AN - OPUS4-36726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Meier, F. A1 - Panne, Ulrich T1 - Comparison of the separation performance of a conventional and a miniaturized AF4 channel N2 - A miniaturized AF4 channel was introduced for the rapid analysis of different nanoparticle samples. UV-Vis-MALS provides the possibility to measure the particle size and molar mass and offers a powerful tool for the investigation of separation performances of different AF4 channels. T2 - BfR Retreat 2016 CY - Berlin, Germany DA - 23.09.2016 KW - Field-flow fractionation KW - Miniaturized AF4 channel PY - 2016 AN - OPUS4-38255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Demidov, Alexander A1 - Glaus, Reto A1 - Panne, Ulrich T1 - Diagnostics and modeling of laser induced plasma in relation to current needs of spectrochemical analysis N2 - The short report on computer modeling and diagnostics of laser induced plasmas T2 - Winter Plasma Conference CY - Tucson, USA DA - 08.01.2016 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2016 AN - OPUS4-38773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abdelshafi, Nahla A. A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Microfluidic electrochemical immunosensor for cocaine monitoring N2 - Immunoassays based on the detection of the antibody-antigen interaction belong to the most important analytical techniques. Electrochemical methods in immunoassays are increasingly used as they offer some Advantages as being fast, simple, portable and cheap detection methods. Cocaine is a highly addictive stimulant that occurs naturally as an Alkaloid of the Coca plants. It is frequently detected on bank notes and in wastewater. T2 - Biosensors 2016 CY - Gothenburg, Sweden DA - 25.05.2016 KW - Cocain PY - 2016 AN - OPUS4-38552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of total sulfur in a metal matrix by ICP-IDMS: Example Cu matrix N2 - Previously on sulfur determination in metal revealed a lack of traceability and inconsistent results. Solving the problems a reference procedure for sulfur measurement in metal are required to build up a reliable reference value. In this study a procedure was developed for quantification of total sulfur at low concentration (in sub ppm level) in metal using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). The ion exchange method and complexing agent were applied in this procedure to avoid loading large amount of metal into the instrument. Adding ammonia as a complexing agent into sample solution to reduce sulfur-metal co-elute. The procedure shows high performance and it is expressed in % recovery of sulfur (> 90%) and % metal elimination (>99 %). Additionally, relative measurement uncertainties were calculated less than 1.5 % and the results are traceable directly to SI units. This study would establish as reference procedure for sulfur measurement in metal sample which fit for these purpose as follows; for certified reference material and assigned value for inter-laboratory comparison. T2 - Anwendertreffen Plasmaspektrometrie 2016 CY - Berlin, Germany DA - 22.02.2016 KW - IDMS KW - Sulfur-matrix separatio KW - Purity assessment PY - 2016 AN - OPUS4-40027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Friction-induced explosive reactions N2 - The motivation to examine the influence of friction on surfaces of energetic materials (EM) has diverse backgrounds. On the one hand the very old hot spot theory predicts, that the size of such hot spot could be in the range of a molecule. The initiation of an EM could start by mechanical excitation, i.e. friction, and continues driven by an exothermal chemical reaction. Following such phenomena on the molecular scale with an imaging method such as AFM should enable us to separate several steps of ignition, if there are any. The experiments showed that HMX mainly undergoes a plastic deformation without further consequences. TNP however showed self healing in the wear track after scratching and simultaneously the destruction of a crystal edge outside the wear track. Additionally nanoparticles appear, tribologists call this "third body formation", which are proven to have a different chemical composition as the original TNP. The self healing effect on the surface is verified with experiments on self diffusion of TNP molecules to and fro the free edges of the crystal. The conclusion is that the formation of a hot spot can be shown to consist of several subsequent steps, separated temporally and locally. The goal to excite the thermal decomposition of a whole TNP crystal (nanoexplosion) was yet not reached due to unfavourable conditions related to thermal conductivity and build-up of pressure. T2 - Role of Third Bodies in Tribology, Colloquium of 5.1 CY - BAM, Berlin, Germany DA - 09.06.2016 KW - AFM KW - Energetic material KW - Hot spot KW - Friction PY - 2016 AN - OPUS4-36433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhiem, S. A1 - Barthel, Anne-Kathrin A1 - Meyer-Plath, A. A1 - Hennig, M. P. A1 - Wachtendorf, Volker A1 - Sturm, Heinz A1 - Schäffer, A. A1 - Maes, H. M. T1 - Release of 14C-labelled carbon nanotubes from polycarbonate composites N2 - Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs (14C-CNT) for polycarbonate polymer nanocomposites with 1 wt% 14C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m2, whereas only 0.8 mg CNT/m2 were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. KW - Weathering KW - Carbon nanotubes KW - Nanocomposites KW - Release KW - Quantification PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0269749116303748 DO - https://doi.org/10.1016/j.envpol.2016.04.098 SN - 0269-7491 VL - 215 IS - August SP - 356 EP - 365 PB - Elsevier Ltd. CY - Paris AN - OPUS4-36899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wunderle, B. A1 - Onken, T. A1 - Heilmann, J. A1 - Silbernagl, Dorothee A1 - Arnold, J. A1 - Bieniek, T. A1 - Pufall, R. T1 - Reliability of sputtered thin aluminium films under accelerated stress testing by vibration loading and modeling N2 - Aluminium is still one of the most important contact metallisations for power electronic chips like MOSFETs or IGBTs. With a large difference in thermal expansion coefficients (CTEs) between aluminium and silicon and the temperatures generated in hot-spots during high power transients, these layers are prone to failure due to thermo-mechanical fatigue. Usually lifetime assessment is done by subjecting dedicated test specimens to standardised stress tests as e.g. active or passive thermal cycling. This paper proposes a novel method for accelerated stress testing and lifetime modelling of thin aluminium films in the high-cycle fatigue regime by isothermal mechanical loading. The proposed novel test method is suggested to complement or replace resource-demanding thermal cycling tests and allow simple in-situ monitoring of failure. T2 - 6th Electronic System-Integration Technology Conference (ESTC) CY - Grenoble, France DA - 13.09.2016 KW - Semiconductor device reliability KW - Thermal expansion KW - AFM KW - Vibrations KW - Nanoroughness KW - Accelerated stress testing KW - Active thermal cycling KW - Power electronic chips KW - Sputtered thin aluminium film KW - Thermomechanical fatigue PY - 2016 DO - https://doi.org/10.1109/ESTC.2016.7764458 SP - 1 EP - 14 PB - IEEE AN - OPUS4-43595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartmann, S A1 - Sturm, Heinz A1 - Blaudeck, T A1 - Hoelck, O A1 - Hermann, S A1 - Schulz, SE A1 - Wunderle, B. T1 - Experimental and computational studies on the role of surface functional groups in the mechanical behavior of interfaces between single-walled carbon nanotubes and metals N2 - To study the mechanical interface behavior of single-walled carbon nanotubes (CNTs) embedded in a noble metal, we performed CNT-metal pull-out tests with in situ scanning electron microscope experiments. Molecular dynamics (MD) simulations were conducted to predict force-displacement data during pull-out, providing critical forces for failure of the system. In MD simulations, we focused on the influence of carboxylic surface functional groups (SFGs) covalently linked to the CNT. Experimentally obtained maximum forces between 10 and 102 nN in palladium and gold matrices and simulated achievable pulling forces agree very well. The dominant failure mode in the experiment is CNT rupture, although several pull-out failures were also observed. We explain the huge scatter of experimental values with varying embedding length and SFG surface density. From simulation, we found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate CNT rupture. To qualify the existence of carboxylic SFGs on our CNT material, we performed analytical investigation by means of fluorescence labeling of surface species and discuss the results. With this contribution, we focus on a synergy between computational and experimental approaches involving MD simulations, nano scale testing, and analytics (1) to predict to a good degree of accuracy maximum pull-out forces of single-walled CNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure with focus on SFGs. This is of fundamental interest for the design of future mechanical sensors incorporating piezoresistive single-walled CNTs as the sensing element. KW - Oxygen-containing functionalities KW - Molecular-dynamics KW - Structural characterization KW - Reinforced composites KW - Raman spectroscopy KW - Shear strength KW - Polymer matrix KW - Pull-out KW - Simulation KW - Purification PY - 2016 DO - https://doi.org/10.1007/s10853-015-9142-6 SN - 0022-2461 SN - 1573-4803 VL - 51 IS - 3 SP - 1217 EP - 1233 AN - OPUS4-35795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -