TY - JOUR A1 - Hesse, Almut A1 - Weller, Michael G. T1 - Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids N2 - Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. KW - Protein analysis KW - Proteomics KW - Peptides KW - Metrology KW - Certified reference materials KW - Amino acid analysis KW - Hydrolysis KW - Microwave KW - Tyrosine KW - Phenylalanine KW - Tryptophan PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370215 DO - https://doi.org/10.1155/2016/7374316 SN - 2090-0112 SN - 2090-0104 VL - 2016 SP - Article 7374316, 1 EP - 8 PB - Hindawi CY - Cairo, London, New York AN - OPUS4-37021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF ED - Halisch, M. ED - Kruschwitz, Sabine ED - Schmitt, M. ED - Weller, Andreas T1 - Quantification of rock structures with high resolution X-ray μ-CT for laboratory SIP measurements N2 - Spectral Induced Polarization (SIP) measurements are used in many different ways to characterize natural rocks and soils. Main foci of interest are the enhanced characterization of the causes of IP-effects in clastic rocks (especially sandstones), the interactions between the matrix-fluid-system and within the electrical double layers as well as the correlation with “classical” petrophysical parameters, such as specific surface area, permeability, mercury intrusion capillary pressure (MICP) and others. Nevertheless, for all of these investigations, knowledge of the inner structure of the sample material is essential in order to create reliable and validated models as well as to interpret and to assess the data most completely. Unfortunately, many of the methods used, to get access to the inner structure of rocks are destructive (e.g. MICP, thin sectioning, etc.) and the valuable sample is lost. In addition, data is either of volume integrated nature or only available for the 2D case and the usage of sister cores does not necessarily lead to reliable results. In this paper, the authors showcase the possibilities of non-destructive and three dimensional X-ray computed tomography and of enhanced image analysis capabilities for the quantification of rock structures at the pore scale. T2 - IP Workshop 2016 CY - Aarhus, Denmark DA - 06.06.2016 KW - μ-CT imaging, KW - Rock structure KW - Digital image analysis KW - Pore geometry KW - Grain geometry KW - SIP PY - 2016 SP - 1 EP - 4 CY - Aarhus, Denmark AN - OPUS4-37024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - Time- & spatial-resolved X-ray absorption fine structure (XAFS) spectroscopy in a single-shot – new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved. KW - Time resolution KW - Single-shot XAFS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370892 DO - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 IS - 23 SP - 769 EP - 776 PB - International Union of Crystallography CY - Chester, UK AN - OPUS4-37089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deiting, D. A1 - Börno, Fabian A1 - Hanning, S. A1 - Kreyenschmidt, M. A1 - Seidl, T. A1 - Otto, M. T1 - Investigation on the suitability of ablated carbon as an internal standard in laser ablation ICP-MS of polymers N2 - The conventional quantitative method for the analysis of inorganic elements in polymer matrices is a complex and time consuming process that presents a significant risk for error. Typically, polymers are digested in a microwave oven or other devices under high temperature and pressure for several hours while employing different mixtures of high purity acids. In many cases, particularly when high concentrations of doped elements are present, the digestion is often incomplete and therefore the reproducibility depends strongly on the type of polymer and additives used. A promising alternative technology that allows for the direct analysis of these polymers without digestion is laser ablation ICP-MS. Due to a lack of available reference materials and the presence of matrix dependent effects, a precise calibration cannot be obtained. In order to compensate for the matrix dependent effects the use of internal standardization is necessary. In this study the correlation between the carbon released during the ablation process and the 13C signal detected by ICP-MS and its use as an internal standard are investigated. For this purpose, twenty-one virgin polymer materials are ablated; the released carbon is determined and correlated with the corresponding integrated 13C signal. The correlation resulted in a direct relationship between the ablated carbon and 13C signal demonstrating the potential ability to neglect at least some of the matrix dependent and transport effects which occur during the laser ablation of virgin polymers. KW - Laser ablation KW - ICP-MS KW - Polymer PY - 2016 DO - https://doi.org/10.1039/C6JA00020G SN - 0267-9477 VL - 31 IS - 8 SP - 1605 EP - 1611 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Mieller, Björn A1 - Noordmann, J. A1 - Rienitz, O. A1 - Malinovskiy, D. T1 - Characterization of a series of absolute isotope reference materials for magnesium: ab initio calibration of the mass spectrometers, and determination of isotopic compositions and relative atomic weights N2 - For the first time, an ab initio calibration for absolute Mg isotope ratios was carried out, without making any a priori assumptions. All quantities influencing the calibration such as the purity of the enriched isotopes or liquid and solid densities were carefully analysed and their associated uncertainties were considered. A second unique aspect was the preparation of three sets of calibration solutions, which were applied to calibrate three multicollector ICPMS instruments by quantifying the correction factors for instrumental mass discrimination. Those fully calibrated mass spectrometers were then used to determine the absolute Mg isotope ratios in three candidate European Reference Materials (ERM)-AE143, -AE144 and -AE145, with ERM-AE143 becoming the new primary isotopic reference material for absolute isotope ratio and delta measurements. The isotope amount ratios of ERM-AE143 are n(25Mg)/n(24Mg) = 0.126590(20) mol/mol and n(26Mg)/n(24Mg) = 0.139362(43) mol/mol, with the resulting isotope amount fractions of x(24Mg) = 0.789920(46) mol/mol, x(25Mg) = 0.099996(14) mol/ mol and x(26Mg) = 0.110085(28) mol/mol and an atomic weight of Ar(Mg) = 24.305017(73); all uncertainties were stated for k = 2. This isotopic composition is identical within uncertainties to those stated on the NIST SRM 980 certificate. The candidate materials ERM-AE144 and -AE145 are isotopically lighter than ERM-AE143 by 1.6 ‰ and 1.3 ‰, respectively, concerning their n(26Mg)/n(24Mg) ratio. The relative combined standard uncertainties are ≤0.1 ‰ for the isotope ratio n(25Mg)/n(24Mg) and ≤0.15 ‰ for the isotope ratio n(26Mg)/ n(24Mg). In addition to characterizing the new isotopic reference materials, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multicollector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ and 0.7 ‰. KW - isotope reference material KW - absolute measurements KW - mass spectrometry KW - atomic weight KW - magnesium PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370931 DO - https://doi.org/10.1039/C6JA00013D SN - 0267-9477 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 31 IS - 7 SP - 1440 EP - 1458 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fischer, Daniel T1 - Ellipsometric characterization of metal doped SnOx thin films for SPREE-based gas sensors N2 - Gas sensors are an important tool in various areas for example in industrial process control as well as Gas sensors are an important tool in various areas for example in industrial process control as well as safety applications or in research. A useful gas detector should be selective, precise, stable and cost-effective. In the present research a surface based gas detection technique is investigated using the SPR effect with ellipsometric readout. This technique is called surface plasmon resonance enhanced ellipsometry (SPREE). The sensor consists of a gold layer (40 nm) top-coated with a doped metal-oxide (M:SnOₓ, 5 nm). The coating is added by magnetron sputtering with doped targets with different doping concentrations. It could be shown that, without the top-coating, these type of sensors can detect various gases, e.g. CO, H2, O2, O3, He, N2, with sensitivities down to the ppm range (in air). The goal of the present study is to characterize the additional coating materials in dependence of the coating conditions. With the help of the doped-metal oxide, the sensitivity increases dramatically by a factor of 100. Additionally, a selectivity for specific gases is observed which depends on the doping conditions of the coating. Changing the properties of the plasma coating process and the doping metal gives access to a variety of different layers and enables us to find the best conditions. T2 - Leibniz Institut für Analytische Wissenschaften ISAS e.V. - Kolloqium CY - Berlin, Germany DA - 05.05.2016 KW - Ellipsometry KW - SPR effect KW - SnOx KW - Gas sensors PY - 2016 AN - OPUS4-37034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech, Anja A1 - Wilke, Olaf A1 - Horn, Wolfgang A1 - Jann, Oliver T1 - Analysis of very volatile organic compounds (VVOC) with thermal desorption GC-MS N2 - Most VVOC were rarely considered in the evaluation of construction products. (Salthammer, 2014) In Germany this will change because the latest version of the German AgBB scheme for health evaluation (2015) now include VVOC, e.g. ethyl acetate and ethanol. In this study selected compounds were tested with the procedure described in ISO 16017 and a method for measuring VVOC with thermal desorption was developed. Three different adsorbents Tenax TA, Carbograph 5TD and Carbopack X were tested to analyse VVOC according to ISO 16017. For the tested VVOC, Carbograph 5TD showed the best results under the chosen analytical conditions. T2 - Indoor Air 2016, The 14th international conference of Indoor Air Quality and Climate CY - Gent, Belgium DA - 03.07.2016 KW - Thermal desorption KW - VVOC KW - Carbograph 5TD KW - Carbopack X PY - 2016 SP - Paper 889, 1 EP - 2 AN - OPUS4-37035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf T1 - Analysis of very volatile organic compounds (VVOC) with thermal desorption GC-MS N2 - Most VVOC were rarely considered in the evaluation of construction products. (Salthammer, 2014) In Germany this will change because the latest version of the German AgBB scheme for health evaluation (2015) now include VVOC, e.g. ethyl acetate and ethanol. In this study selected compounds were tested with the procedure described in ISO 16017 and a method for measuring VVOC with thermal desorption was developed. Three different adsorbents Tenax TA, Carbograph 5TD and Carbopack X were tested to analyse VVOC according to ISO 16017. For the tested VVOC, Carbograph 5TD showed the best results under the chosen analytical conditions. T2 - Indoor Air 2016, The 14th international conference of Indoor Air Quality and Climate CY - Gent, Belgium DA - 03.07.2016 KW - Thermal desorption KW - VVOC KW - Carbograph 5TD KW - Carbopack X PY - 2016 AN - OPUS4-37037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Dropa, T. A1 - Urban, M. A1 - Costero, A. M. A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut T1 - A rapid and sensitive strip-based quick test for nerve agents Tabun, Sarin, and Soman using BODIPY-modified silica materials N2 - Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m−3 range in a few seconds. KW - Chemical warfare agents KW - Fluorescence KW - Hybrid sensor materials KW - Nerve gases KW - Test strip analysis PY - 2016 DO - https://doi.org/10.1002/chem.201601269 SN - 0947-6539 SN - 1521-3765 VL - 22 IS - 32 SP - 11138 EP - 11142 PB - Wiley CY - Online Library AN - OPUS4-37063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. T1 - Visualization of low-contrast surface modifications: thin films, printed pattern, laser-induced changes, imperfections, impurities, and degradation N2 - Industrial quality control (QC) nowadays requires the visualization of surface modifications from the macro-scopic to the microscopic or even nanoscopic scale. This is a prerequisite to the evaluation of functionality and reliability, the detection of defects and their separation of artefacts. The diversity of applications ranges from low-E glazings and solar panels, micro- and optoelectronics, micro- and smart devices to sensor-on-chip and lab-on-chip systems [1]. Optical microcopy (light, confocal laser scanning, white light interference) as established QC-tool is operated at normal incidence, i.e. p- and s-polarization are undistinguishable. Either light-intensity in terms of grey scale and colour or intensity-correlated effects of phase shifts are used. In case of ellipsometry, operated at oblique incidence, p- and s-polarization matter, and amplitude ratios and phase shifts upon reflection are measured. Hence, information content must be much higher. The visualization of surface modifications may be very challenging for coating/substrate systems of either al-most identical optical constants, e.g. transparent films on substrates of the same material, or minor film thick-ness, substance quantity and affected area, e.g. ultra-thin or island films. Ellipsometry gives access to the con-trast of intensity (I), amplitude ratio (Ψ), and phase shift (Δ) with nanometer-scaled vertical and micrometer-scaled lateral sensitivity, one is able to identify tiny changes within an unmodified surface. As both mapping ellipsometry (ME) and imaging ellipsometry (IE) are operated in the optical far-field, surface inspection is also possible on the macroscopic scale. Near the Brewster-angle of the bare, undamaged, clean, and fresh substrate, the contrast to add-on and sub-off features is superior. Fig. 1 shows three examples of ellipsometric imaging, i.e. a thin SnO:Ni film on SiO2/Si (Fig. 1a), a dried stain of an anti-body solution on cyclo-olefin-polymer (COP) shown in Fig. 1b, and a polyimide film residue on SiO2/Si (Fig. 1c). For all of these examples, ellipsometry provides much better contrast between substrate and surface modification than optical microscopy, sometimes primarily caused by the oblique incidence (Figs. 1a and 1c), in other cases related to the phase sensitivity of ellipsometry (Fig. 1b). Other examples are laser surface modifications and the corrosion of glass. In these cases, optical microscopy and IE yield to similar results, how-ever only ellipsometry gives access to modelling. Further investigated coating/substrate systems are 100Cr6 steel, native oxide on silicon, borosilicate glass, and the polymer polycarbonate with deposited films of graphene and ta-C:H, printed and dried pattern of liquids such as water, cleaning agents, and dissolved silicone. Besides imaging ellipsometry, referenced spectral ellipsometry (RSE) has been applied, combining the advantages of both optical microscopy (fast measurement) and ellipsometry (high sensitivity to tiny modifications). T2 - International Conference on Spectroscopic Ellipsometry (ICSE-7) CY - Berlin, Germany DA - 06.06.2016 KW - Ellipsometry KW - Thin films KW - Impurities KW - Degradation PY - 2016 AN - OPUS4-37068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements: Design, development, validation, and fabrication of format-adaptable fluorescence standards for intensity, spectral, and temporal quantities N2 - Photoluminescence techniques are amongst the most widely used tools in the material and life sciences, with new and exciting applications continuously emerging, due to their many advantages like comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. Drawbacks are , however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are time-dependent due to the aging of instrument components, and difficulties to measure absolute fluorescence intensities. Thus, there is a considerable need for standards for intensity, spectral, and temporal fluorescence quantities to meet the increasing need for instrument performance validation and global trends to harmonize physicochemical measurements. In this respect, instrument calibration strategies together with different types of fluorescence standards are presented as well as design concepts for robust, easy-to-use, and format-adaptable fluorescence standards useable for the determination of different fluorescence parameters and a broad variety of fluorescence techniques. T2 - SALSA-Kolloquien CY - Berlin, Germany DA - 07.06.2016 KW - Fluorescence KW - Standard KW - Quality assurance KW - Spectral correction KW - Quantum yield PY - 2016 AN - OPUS4-37070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine T1 - Measuring moisture in building material - an overview N2 - In Germany there is an existing built infrastructure worth about 50 trillion Euros. The expected lifetimes of individual structures are up to 100 years. Considerable costs (annually about 35 billion Euros, the trend continues upwards) are involved in order to maintain and rehabilitate both residential as well as transportation infrastructure buildings. Most damages we observe on our built infrastructure are moisture-induced processes. Consequently reliable moisture measurement tools a highly needed for meaningful building diagnosis investigations. The optimal moisture measuring technique would be non-destructive, fast, repeatable, reliable, independent of steel in the vicinity, the surface condition or possible salt loads of the material under test. Since this is unfortunately not the case for any non-destructive method, it is often very difficult to decide for users which method to use for the particular testing problem. The only standardized methods in Germany are the “direct” and destructive Darr- and the CM tests. Although they can be highly accurate (when handled with care during the sampling), they deliver only punctual information and cannot be used for monitoring. The other, non-destructive methods are based on the change in humidity-dependent physical material properties. The underlying physics, their particular advantages and disadvantages are discussed in this paper. T2 - Building Safety Symposium CY - Hong Kong, China DA - 22.04.2016 KW - Non-destructive methods KW - Moisture measuring KW - Electrical methods KW - Microwave PY - 2016 AN - OPUS4-37118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Dispersities of Polyesters of Various Diphenols Prepared by Irreversible Polycondensations N2 - Polyesters of bisphenol-A, bisphenol-P, catechol, and sebacic acid are prepared and different synthetic methods are compared. The diphenols are condensed with sebacoyl chloride either in dichloromethane/pyridine or in refl uxing chlorobenzene without HCl-acceptor. Further- more, bisphenol-A acetate is polycondensed with sebacic acid in bulk. All experiments are worked up so that fractionation is avoided. The extent of cyclization is estimated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and the molar mass distribution by size exclusion chromatography (SEC). Polycondensations in solution yield larger fractions of cyclics and higher dispersities (up to 11). Polycondensations in bulk give lower fractions of cycles and dispersities from 4.6 to 6.3 for high molar mass polyesters or 2.8 to 3.5 for low molar mass products. Characteristic curves describing the dependence of the dispersity on the initial monomer concentration are elaborated. KW - cyclization KW - dispersity KW - mass spectra KW - polycondensation KW - polyesters PY - 2016 DO - https://doi.org/10.1002/macp.201600004 IS - 217 SP - 1361 EP - 1369 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-37120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ralf A1 - Weigert, Florian A1 - Lesnyak, V. A1 - Leubner, S. A1 - Lorenz, T. A1 - Behnke, Thomas A1 - Dubavik, A. A1 - Joswig, J.-O. A1 - Resch-Genger, Ute A1 - Gaponik, N. A1 - Eychmüller, A. ED - Resch-Genger, Ute ED - Schneider, Ralf T1 - pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O N2 - The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which – together with alloyed CdₓHg₁₋ₓTe – are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D₂O and compared to the results from previous dilution studies with a set of thiol-capped Cd₁₋ₓHgₓTe SC NCs in D₂O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman’s test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H₂O compared to D₂O, underlining also the role of hydrogen bonding and solvent molecules. KW - Quantum dots KW - Fluorescence KW - Ligand analysis KW - Nano particles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371253 DO - https://doi.org/10.1039/c6cp03123d VL - 18 IS - 28 SP - 19083 EP - 19092 PB - RSC CY - Cambridge AN - OPUS4-37125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Hybrid iron-based core-shell magnetic catalysts for fast degradation of bisphenol A in aqueous systems N2 - Three types of hybrid modified magnetite (Fe₃O₄) nanoparticles, functionalized with either chitosan, chitosan/iron (II) oxalate or chitosan/iron (III) citrate, were synthesized by chemical precipitation method. The obtained nanomaterials were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller analysis, scanning and Transmission electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The prepared composites were further tested as magnetic catalysts for the removal of bisphenol A (BPA) in aqueous media. The kinetic Degradation experiments were performed at laboratory scale, while the best operational parameters for all three materials were established: 1.00 g L⁻¹ of catalyst, 10 mmol L⁻¹ H₂O₂, under simulated solar light irradiation. After 15 min of UVA irradiation under the experimental conditions mentioned above, it was possible to decompose up to 99% of the micropollutant over all catalysts. Fe₃O₄/chitosan/iron oxalate catalyst showed the highest and fastest catalytic activity in BPA removal. Catalytic wet peroxide oxidation of non-biodegradable micropollutants on such iron-based hybrid nanoparticles can be a suitable pre-treatment method for wastewater decontamination, as an environment-friendly simplified Approach for water clean-up. KW - Katalysator KW - Bisphenol A KW - Nano KW - Fenton KW - Magnetische Nanopartikel PY - 2016 DO - https://doi.org/10.1016/j.cej.2016.05.090 SN - 1385-8947 VL - 302 SP - 587 EP - 594 PB - Elsevier CY - Amsterdam AN - OPUS4-37126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Kammermeier, Michael A1 - Müller, Maximilian A1 - Strangfeld, Christoph T1 - RFID sensor systems embedded in concrete – systematical investigation of the transmission characteristics N2 - Long-term completely embedded sensor systems offer innovative possibilities for structural health monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external reader device. To evaluate characteristics and conditions of this concept, a systematical investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary research project at BAM. First results are presented in this paper. T2 - 8th European Workshop On Structural Health Monitoring CY - Bilbao, Spain DA - 05.07.2016 KW - Structural health monitoring KW - Embedded sensor KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics PY - 2016 SP - 1 EP - 5 AN - OPUS4-37129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph T1 - RFID sensor systems embedded in concrete – systematical investigation of the transmission characteristics N2 - Long-term completely embedded sensor systems offer innovative possibilities for structural health Monitoring of concrete structures. Measuring of relevant parameters, e.g., temperature, humidity, or indication of corrosion can be performed with low energy sensors. This allows to implement passive RFID sensor systems without cable connection and battery, which are power supplied exclusively by the electromagnetic field from the external Reader device. To evaluate characteristics and conditions of this concept, a systematical Investigation of the transmission characteristics with variation of relevant parameters, as communication frequency, installation depth, type of concrete, moisture content, etc. is currently carried out in an interdisciplinary research project at BAM. First results are presented in this paper. T2 - 8th European Workshop On Structural Health Monitoring CY - Bilbao, Spain DA - 05.07.2016 KW - Embedded sensor KW - Energy harvesting KW - Wireless sensors KW - RFID sensors KW - Transmission characteristics KW - Structural health monitoring PY - 2016 AN - OPUS4-37130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Daum, Werner A1 - Gong, Xing A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Schukar, Vivien A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe T1 - New self - diagnostic fiber optical sensor technique for structural health monitoring N2 - Fiber optic sensors have gained increasing importance in recent years and are well established in many areas of industrial applications. In this paper, we introduce a concept of a self-diagnostic fiber optic sensor. The presented sensor is to resolve the problems of embedded fiber optic sensors in complex structures and to enable the validation under operational conditions. For this purpose, different magnetostrictive coated fiber optic sensors were developed and various experiments were performed to verify their mode of Operation and to determine the respective reproducibility. The measuring principle is illustrated by obtained experimental results, which showed a change in wavelength from 1 pm at a magnetic field strength change of 0.25 mT. In addition, the temperature characteristics of the implemented magnetostrictive sensor were analyzed and an experimental factor of 1.5 compared to a reference fiber optic sensor was determined. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Self-diagnostic fiber optical sensor KW - Magnetostrictive metal coating KW - Magnetic field KW - Fiber bragg grating PY - 2016 DO - https://doi.org/10.1016/j.matpr.2016.03.038 SN - 2214-7853 VL - 3 IS - 4 SP - 1009 EP - 1013 AN - OPUS4-37131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Simple methods, validation concepts, and reference materials for the characterization of functional nanomaterials and microparticles N2 - The surface chemistry / functionalization of nanomaterials and microparticles largely controls the stability of these materials as well as their solubility and subsequent biofunctionalization and their interactions with biological systems. Moreover, in the case of some nanomaterials like semiconductor quantum dots or lanthanide-based upconversion nanocrystals, the ligand shell strongly affects their optical properties, e.g., via passivation of surface states and traps that favor luminescence quenching or the protection of surface atoms from quenching water molecules. This renders analytical methods for the quantification of surface groups like functionalities very important. Targets of broad interest are here amino, carboxyl, alkine and maleimide groups used for common bioconjugation reactions and typical ligands like thiols and polyethylene glycol (PEG) molecules of varying length, used for the tuning of material hydrophilicity and biocompatibility, minimization of unspecific interactions, prevention of biofouling, and enhancement of blood circulation times as well as surface-bound biomolecules like streptavidin or other biomolecules relevant e.g., for diagnostic assays. Here, we focus on simple optical methods relying on standard laboratory instrumentation, validated by method comparison and/or mass balances and present examples for their use for the characterization of different types of nanomaterials and microparticles. T2 - Innovationsforum Senftenberg CY - Senftenberg, Germany DA - 01.06.2016 KW - Surface chemistry KW - Functional group analysis KW - Thiol assay KW - Fluorescence KW - Nanomaterial KW - Nanoparticle KW - PEG KW - Ligand KW - Semiconductor quantum dot KW - Quantum yield KW - Quantification KW - Method validation KW - Integrating sphere spectroscopy KW - Fluorescence standard PY - 2016 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-37111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications and challenges of luminescence-based detection methods in the life and material sciences N2 - Luminescence-based detection methods, ranging from fluorescence spectroscopy for photophysical and mechanistic studies over sensing applications, chromatographic separation techniques and the microarray technology with fluorescence detection to fluorescence microscopy, flow cytometry, single molecule spectroscopy, and molecular imaging to integrating sphere spectroscopy, are among the most widely used methods in the life and material sciences. This is due to e.g., their unique sensitivity enabling the detection of single molecules, potential for multiplexing, ease of combination with spatial resolution, and suitability for remote sensing. Many of these advantages are closely linked to the choice of suitable molecular and nanoscale fluorescent reporters, typically required for signal generation. This includes organic dyes without and with sensor function, fluorophore-encoded polymeric and silica nanoparticles as well as nanocrystalline systems like semiconductor quantum dots and upconversion phosphors, emitting in the visible (vis), near-infrared (NIR), and IR (infrared). Current challenges present the environment sensitivity of most fluorophores, rendering fluorescence spectra, measured intensities/fluorescence quantum yields, and fluorescence decay kinetics matrix-dependent, and instrument-specific distortions of measured fluorescence signals that need to be considered for quantification and comparability of data, particularly fluorescence spectra. Here, current applications of luminescence-based methods and different types of reporters will be presented. In this context, suitable spectroscopic tools for the characteri-zation of the optical properties of fluorescent reporters and fluorophore-encoded microparticles, analytical tools for the determination of the surface chemistry of different types of particles, and different multiplexing strategies will be discussed. T2 - 9th Meeting of Engineering of Functional Interfaces CY - Wildau,Germany DA - 03.07.2016 KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Nanomaterial KW - Nanoparticle KW - PEG KW - Ligand KW - Semiconductor quantum dot KW - Quantum yield KW - Quantification KW - Upconversion nanoparticle KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence standard KW - Calibration PY - 2016 AN - OPUS4-37112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -