TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques JF - Nondestructive Testing & Evaluation International N2 - This paper presents different super resolution reconstruction techniques to overcome the spatial resolution limits in thermography. Pseudo-random blind structured illumination from a onedimensional laser array is used as heat source for super resolution thermography. Pulsed thermography measurements using an infrared camera with a high frame rate sampling lead to a huge amount of data. To handle this large data set, thermographic reconstruction techniques are an essential step of the overall reconstruction process. Four different thermographic reconstruction techniques are analyzed based on the Fourier transform amplitude, principal component analysis, virtual wave reconstruction and the maximum thermogram. The application of those methods results in a sparse basis representation of the measured data and serves as input for a compressed sensing based algorithm called iterative joint sparsity (IJOSP). Since the thermographic reconstruction techniques have a high influence on the result of the IJOSP algorithm, this paper Highlights their Advantages and disadvantages. KW - Super resolution KW - Compressed sensing KW - Laser thermography KW - Virtual wave KW - Defect reconstruction PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102228 VL - 111 SP - 2228 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Burgholzer, P. A1 - Berer, T. A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Thermographic super resolution using structured 1D laser illumination and joint sparsity N2 - Thermographic NDE is based on the interaction of thermal waves with inhomogeneities. These inhomogeneities are related to sample geometry or material composition. Although thermography is suitable for a wide range of inhomogeneities and materials, the fundamental limitation is the diffusive nature of thermal waves and the need to measure their effect radiometrically at the sample surface only. The propagation of the thermal waves from the heat source to the inhomogeneity and to the detection surface results in a degradation in the spatial resolution of the technique. A new concerted ansatz based on a spatially structured heating and a joint sparsity of the signal ensemble allows an improved reconstruction of inhomogeneities. As a first step to establish an improved thermographic NDE method, an experimental setup was built based on structured 1D illumination using a flash lamp behind a mechanical aperture. As a follow-up to this approach, we now use direct structured illumination using a 1D laser array. The individual emitter cells are driven by a random binary pattern and additionally shifted by fractions of the cell period. The repeated measurement of these different configurations with simultaneously constant inhomogeneity allows for a reconstruction that makes use of joint sparsity. With analytical-numerical modelling or numerical FEM simulations, we study the influence of the parameters on the result of non-linear reconstruction. For example, the influence of the illumination pattern as a variable heat flux density and Neumann boundary condition for convolution with the constant Green's function can be studied. These studies can be used to derive optimal conditions for a measurement technique. T2 - 62. International School of Quantum Electronics die Tagung “Progress in Photoacoustic & Photothermal Phenomena" CY - Erice, Italy DA - 06.09.2018 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2018 AN - OPUS4-46180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Photothermal super resolution image reconstruction using structured 1d laser illumination N2 - The separation of two closely spaced defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying super resolution algorithms, such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Different data processing techniques before applying the IJOSP algorithm as well as the influence of regularization parameters in the data processing techniques are discussed. Moreover, the degradation of super resolution reconstruction goodness by the choice of experimental parameters such as laser line width or number of measurements is shown. The application of the super resolution results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. T2 - 46th Annual Review of Profress in Quantitative Nondestructive Evaluation CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2019 AN - OPUS4-48591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - A comparison of different techniques for photothermal super resolution image reconstruction N2 - The separation of two closely located defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows an improved reconstruction of closely located defects. This new technique has also been studied using 1D laser arrays in active thermography. The post-processing can be roughly described by two steps: 1. Finding a sparse basis representation using a reconstruction algorithm such as the Fourier transform, 2. Application of an iterative joint sparsity (IJOSP) method to the firstly reconstructed data. For this reason, different methods in post-processing can be compared using the same measured data set. The focus in this work was the variation of reconstruction algorithms in step 1 and its influence on the results from step 2. More precise, the measured thermal waves can be transformed to virtual (ultrasound) waves that can be processed by applying ultrasound reconstruction algorithms and finally the super resolution algorithm. Otherwise, it is also possible to make use of a Fourier transform with a subsequent super resolution routine. These super resolution thermographic image reconstruction techniques in post-processing are discussed and evaluated regarding performance, accuracy and repeatability. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Photothermal super resolution imaging: a comparison of different reconstruction techniques N2 - The diffusive nature of heat propagation complicates the separation of two closely spaced defects. This results in a fundamental limitation in spatial resolution. Therefore, super resolution (SR) image reconstruction can be used. SR processing techniques based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying SR algorithms such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Two different data processing strategies are evaluated and discussed regarding their influence on the reconstruction goodness as well as their complexity. Moreover, the degradation of the SR reconstruction by the choice of regularization parameters in data processing is discussed. The application of both SR techniques that are evaluated in this paper results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. The fundamental difference between both SR techniques is their complexity. T2 - 46th Annual Review of Profress in Quantitative Nondestructive Evaluation CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Thermal Super Resolution Image Reconstruction Using Structured Laser Heating N2 - The separation of two closely located defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. The measured thermal waves can be transformed to virtual (ultrasound) waves that can be processed by applying ultrasound reconstruction algorithms and finally the super resolution algorithm. Otherwise, it is also possible to make use of a Fourier transform with a subsequent super resolution routine. These super resolution thermographic image reconstruction techniques in post-processing are discussed and evaluated regarding performance, accuracy and repeatability. T2 - 7th Autumn School METTI (Thermal Measurements and Inverse Techniques) CY - Porquerolles Island, Hyères, France DA - 29.09.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - VCSEL array KW - Joint sparsity KW - Compressed sensing PY - 2019 AN - OPUS4-49881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Thermographic super resolution imaging using structured 1D laser illumination N2 - Thermographic nondestructive evaluation (NDE) is based on the interaction of thermal waves with inhomogeneities. These inhomogeneities are related to sample geometry or material composition. Although thermography is suitable for a wide range of inhomogeneities and materials, the fundamental limitation is the diffusive nature of thermal waves and the need to measure their effect radiometrically at the sample surface only. The propagation of the thermal waves from the heat source to the inhomogeneity and to the detection surface results in a degradation in the spatial resolution of the technique. A new concerted ansatz based on a spatially structured heating and a joint sparsity of the signal ensemble allows an improved reconstruction of inhomogeneities. As a first step to establish an improved thermographic NDE method, an experimental setup was built based on structured 1D illumination using a flash lamp behind a mechanical aperture. As a follow-up to this approach, we now use direct structured illumination using a 1D laser array. The individual emitter cells are driven by a pseudo-random binary pattern and are additionally shifted by fractions of the cell period. The repeated measurement of these different configurations enables to illuminate each spot of the sample surface in lateral direction. This allows for a reconstruction that makes use of joint sparsity. The measured data set is processed using super resolution image reconstruction algorithms such as the iterative joint sparsity (IJOSP) algorithm. Using this reconstruction technique and 150 different illumination patterns results in a spatial resolution enhancement of approximately a factor of four compared to the resolution of 5.9 mm for homogenously illuminated thermographic reconstruction. Further, new data processing techniques have been studied before applying the IJOSP algorithm that are more performant or less prone to errors regarding image reconstruction. The choice of regularization parameters in data processing as well as experimental parameters such as the illumination pattern as a variable heat flux density (i.e., the Neumann boundary condition for convolution with the constant Green's function) have a big influence on the reconstruction goodness. With analytical-numerical modelling and numerical FEM simulations, we studied the influence of the experimental parameters on the result of the non-linear IJOSP reconstruction. This has also been investigated experimentally e.g. using different laser line widths or more measurements per position. These studies are used to derive optimal conditions for a certain measurement image reconstruction technique. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2019 AN - OPUS4-48578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -