TY - CONF A1 - Hahn, Marc Benjamin A1 - Radnik, Jörg A1 - Dietrich, P. M. T1 - Near-Ambient-Pressure XPS to investigate radiation damage to DNA N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - Physical and Chemical Analysis of Polymers seminar CY - Online meeting DA - 12.10.2021 KW - Base damage KW - Base loss KW - Cancer therapy KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break KW - DSB KW - Dry DNA KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - LEE KW - Low energy electrons KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Prehydrated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Reactive oxygen species KW - Single-strand break KW - SSB KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray KW - Xray photo electron spectrocopy PY - 2021 AN - OPUS4-53611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - The change of DNA radiation damage upon hydration: In-situ observations by near-ambient-pressure XPS N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Cancer treatment KW - DNA KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - particle scattering KW - Simulation KW - Radiolysis KW - Radiation therapy KW - Radiotherapy KW - LEE KW - Low energy electrons KW - MCS KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Double-strand break (DSB) KW - Hydrated DNA KW - Hydrated electron KW - Ionization KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Prehydrated electron KW - Quasi-direct damage KW - Radiation damage KW - Radical KW - Reactive oxygen species KW - ROS KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - presolvated electron PY - 2023 UR - https://www.nature.com/articles/s42004-021-00487-1 AN - OPUS4-57063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Seitz, H. A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Direct electron irradiation of DNA in fully aqueous environment. Damage determination in combination with Monte Carlo simulations JF - Physical Chemistry Chemical Physics N2 - We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSB) and double-strand breaks (DSB), was determined by electrophoresis. The median lethal dose of D1/2 = 1.7 ± 0.3 Gy was found to be much smaller compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of DSB to SSB was found to be (1:12) as compared to 1:88) found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, cosolutes) for an electron energy range which is difficult to probe by standard methods. KW - Plasmid DNA in water KW - Monte Carlo simulation KW - Low energy electrons KW - DNA radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Lethal dose KW - Radiation damage to biomolecules KW - Solutions (pH, salinity, cosolutes) PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-386981 DO - https://doi.org/10.1039/C6CP07707B SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 3 SP - 1798 EP - 1805 PB - Royal Society of Chemistry AN - OPUS4-38698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hahn, Marc Benjamin T1 - Quantifizierung der Schädigung von DNA in wässriger Lösung unter direkter Elektronenbestrahlung N2 - Bei der Behandlung von Krebs wird Strahlentherapie zur Zerstörung von Tumorzellen eingesetzt. Der zugrunde liegende Wirkmechanismus ist die durch ionisierende Strahlung verursachte Schädigung an Biomolekülen. Dabei kommt den Schädigungsprozessen an DNA aufgrund ihrer zentralen Rolle in Mutation und Zelltod eine besondere Bedeutung zu. Durch den hohen Wasseranteil in menschlichen Zellen findet ein Großteil der inelastischen Streuprozesse an Wassermolekülen statt und führt zur deren Radiolyse. Die so entstehenden Radiolyseprodukte sind für einen Großteil des Schadens an DNA verantwortlich. Ein detailliertes Verständnis der zugrunde liegenden molekularen Interaktion ist die Voraussetzung um effizientere Therapien zu entwickeln. Ziel dieser Arbeit ist es, die Schädigung von DNA durch ionisierende Strahlung in Abhängigkeit der inelastischen Streuevents und des Energieeintrags innerhalb des biologisch relevanten mikroskopischen Treffervolumens zu quantifizieren. Die Bestrahlungen müssen dazu in Flüssigkeit, unter Berücksichtigung der chemischen Umgebung durchgeführt werden, welche die indirekten Schäden vermittelt. Deshalb wurde eine neuartige Kombination aus Experiment und Monte- Carlo-Simulationen entworfen und angewandt. Um Elektronenbestrahlung flüssiger Lösungen innerhalb eines Rasterelektronenmikroskops zu ermöglichen, wurde ein Probenhalter mit einer für Elektronen durchlässigen Nanomembran entwickelt. So können Bestrahlungen an DNA, Proteinen, und Zellen bei verschiedenen pH-Werten, Salzkonzentrationen oder in Anwesenheit von Kosoluten durchgeführt werden. Für ein Modellsystem aus Plasmid-DNA in Wasser wurde damit die mittlere letale Dosis aus der Kombination der experimentellen Daten, Partikelstreusimulationen (Geant4-DNA) und Diffusionsberechnungen zu D1/2 = 1.7 ± 0.3 Gy bestimmt. Aus der Konvolution der Plasmidpositionen mit dem durch Elektronenstreusimulationen bestimmten ortsaufgelösten Energieeintrag wurde dessen Häufigkeitsverteilung im Targetvolumen der Plasmide sowie der mittlere mikroskopische letale Energieeintrag berechnet als E1/2 = 6 ± 4 eV . Es wurde gefolgert, dass weniger als zwei Ionisationsprozesse im sensitiven Targetvolumen der DNA im Mittel zu einem Einzelstrangbruch führen. Das für mikrodosimetrische Modellierungen wichtige Verhältnis von Einzelstrangbrüchen (SSB) zu Doppelstrangbrüchen (DSB) wurde als SSB : DSB = 12 : 1 bestimmt. Die vorgestellte Methode zur Bestimmung mikroskopischer Schaden-Dosis Relationen wurde auf weitere Klassen von Bestrahlungsexperimenten verallgemeinert. Dadurch ist die Methode unabhängig von der verwandten Primärstrahlung, der Probengeometrie und den Diffusionseigenschaften der untersuchten Moleküle anwendbar. So wird eine Vergleichbarkeit experimenteller Systeme mit inhomogenen Energieverteilungen erreicht, die bei ausschließlicher Betrachtung makroskopischer, gemittelter Größen nicht gegeben ist. Des weiteren wurden die Strahlenschutzfunktionen des kompatiblen Soluts Ectoine und sein Einfluss auf Wasser und Biomoleküle untersucht. Mittels Ramanspektroskopie wurde ein kon-zentrationsabhängiger Anstieg des Anteils der Kollektivmoden des Wassers der OH-Streckschwingungen und dessen Unabhängigkeit von der Natriumchloridkonzentration beobachtet. Molekulardynamik-Simulationen zeigten, dass die zwitterionischen Eigenschaften zur Bildung einer half-chair Konformation Ectoines führen. Die Wasserstoffbrückenbindungen in der ersten Hydrationshülle sind signifikant stabiler und besitzen höhere Lebensdauern als das Bulk-Wasser. Bestrahlung von DNA in Anwesenheit von 1 M Ectoine führt zu einer Erhöhung der Überlebensrate um den Faktor 1,41. Die Schutzfunktion wurde auf die Erhöhung des Streuquerschnitts niederenergetischer Elektronen an den akustischen Vibrationsmoden des Wasser durch Ectoine und seine Wirkung als OH-Radikalfänger zurückgeführt. Dies wurde mittels Ramanspektroskopie und Elektronenspinresonanzmessungen (ESR) nachgewiesen. N2 - To cure cancer radiation therapy is used to kill tumor cells. It is based on radiation induced damage to biomolecules. Especially DNA damage is of key interest due to its central role in apoptosis and mutation. Because of the high amount of water in biological tissue, most of the damage is caused by the secondary particles produced by the inelastic scattering of ionizing radiation and water. A detailed understanding of the underlying molecular processes under physiological conditions is the prerequisite to develop more efficient therapies. Goal of this work is to quantify the DNA damage caused by ionizing radiation in dependence of the inelastic scattering events and the energy deposit within the microscopic target volume of biological relevance. The irradiations have to be performed in liquid, under consideration of the chemical environment. Therefore, a new combination of experiment and Monte-Carlo simulations was developed and tested. To make it possible to irradiate liquids with electrons within scanning electron microscopes a new sample holder was constructed incorporating an electron transparent nanomembrane. It makes it possible to irradiate DNA, proteins or cells at different pH, salinity and in the presence of cosolutes. The median lethal dose for a model system of plasmid DNA and water was determined by the combination of experimental data, particle scattering simulations (Geant4-DNA) and Diffusion calculations as D1/2 = 1.7 ± 0.3 Gy. From the convolution of plasmid positions and the spatially resolved energy deposit, as determined by electron scattering simulations, the histogram of the energy deposit within the target volume of the plasmids and the microscopic median lethal energy deposit was calculated as E1/2 = 6 ± 4 eV . It could be deduced that on average less than two ionization events are sufficient to cause a single-strand-break. The relation of single- strand-breaks (SSB) to double-strand-breaks (DSB), which is of importance for microdosimetric modeling, was determined as SSB : DSB = 12 : 1. The presented method for the determination of microscopic dose-damage relations was further extended to be applicable for general irradiation experiments. It becomes independent of the type of primary radiation used, the experimental geometry, and the diffusional properties of the molecules under investigation. This way different experimental systems with varying, inhomogeneous energy deposit characteristics become comparable with each other, which is not possible when only macroscopic averaged values are taken into account. In addition, the radiation protection properties of the compatible solute ectoine, as well as ist influence on the water properties and biomolecules were investigated. Raman spectroscopy revealed a concentration dependent increase of the collective water modes in the OH-stretching region, which was found to be independent of the sodium chloride concentration. Molecular dynamic simulations showed that the zwitterionic properties of ectoine lead to its half-chair conformation. The hydrogen bonds in the first hydration shell are more stable and have an increased lifetime compared to the bulk water. Irradiation experiments with DNA in the presence of 1 M ectoine revealed an increase of the survival rate by a factor of 1.41 as compared to the absence of ectoine. The protective properties of ectoine result from the increase of the inelastic scattering probabilities of low energy electrons at the acoustic vibrational modes of water and its properties as OH-radical scavenger. This was shown by Raman spectroscopy and electron paramagnetic resonance measurements (EPR). KW - DNA KW - Radiation KW - Radiation damage KW - Dosimetry KW - Microdosimetry KW - DNA damage KW - DNA radiation damage KW - Low energy electrons KW - Electron irradiation KW - Hydroxyl radicals KW - Ectoine KW - Ectoine protein interaction KW - Ectoine DNA interaction KW - Ectoine radiation protection KW - Ectoine salt KW - Cancer therapy KW - Radiation therapy KW - Ectoin PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-fudissthesis000000106497-4 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000106497 SP - 1 EP - 108 CY - Berlin AN - OPUS4-44510 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Combination of Monte-Carlo simulations and experimental results to determine the microscopic energy depoit at DNA N2 - The quantification of radiation induced damage to DNA in aqueous en- vironment is of fundamental interest for dosimetry and its application in radiation-therapy and protection. We present a combined experi- mental and simulational approach to quantify and compare radiation induced damage to biomolecules in liquid environment for a wide range of primary radiation sources e. g. photons, electrons or ions and tar- gets, such as DNA, proteins or cells.[1] To show its viability, we will apply this method to an experimentally challenging systems, the di- rect irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here we combine Geant4 electron-scattering simula- tions with calculations concerning the diffusion and convection induced movement of the biomolecules, within a coarse-grained model of the irradiated liquid. Additionally a microscopic target model for the plas- mid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - DNA KW - Radiation damage KW - Dosimetry KW - Microdosimetry KW - Low energy electrons KW - Hydroxyl radicals KW - Monte-Carlo simulation KW - Geant4 KW - Electron scattering KW - Target volume KW - DNA damage KW - DNA radiation damage PY - 2018 AN - OPUS4-44565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - DNA strand break yields by OH-radicals, low energy electrons and prehydrated electrons N2 - Universität Berlin Radiation damage to biomolecules such as DNA, is the reason to treat cancer via radiation therapy. The understanding of the molecular processes and the quantification of the underlying damaging mechanisms is necessary to develope more efficient irradiation protocols for cancer therapy. Thereby damage to DNA is of key interest due to its central role in reproduction and mutation. Due to the high amount of water in biological tissue, most of the damage is caused by the secondary particles which are produced by the interaction of ionizing radiation with water. Thereby a multitude of species are produced, e.g. kinetic low energy electrons, prehydrated electrons, OH-radicals and ions. The quantification of the contribution to DNA damage by the various species is of interest. Here we present an experimental approach to disentangle their relative DNA strand break yields. Plasmid DNA (pUC19 ) is irradiated in water with electrons under the presence of different scavengers. The presented preliminary results reveal the relative contributions of OH-radicals, low energy electrons and prehydrated electrons and their DNA single and double strand break yields. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - DNA KW - Radiation damage KW - Dosimetry KW - Low energy electrons KW - Hydroxyl radicals KW - Geant4 KW - Prehydrated electrons KW - Scavenger KW - Radiation damage to DNA KW - Plasmid DNA KW - Strand breaks KW - Double strand breaks KW - Single strand breaks PY - 2018 AN - OPUS4-44566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ribar, A. A1 - Huber, S. E. A1 - Smiałek, M. A. A1 - Tanzer, K. A1 - Neustetter, M. A1 - Schürmann, Robin A1 - Bald, Ilko A1 - Denifl, S. T1 - Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment JF - Physical chemistry chemical physics N2 - 2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylene-diaminetetraacetic acid (EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed during the irradiation process, which are able to attach to the molecular compounds present on the surface. In the present study we experimentally investigate low energy electron attachment to TRIS and methyliminodiacetic acid (MIDA), an analogue of EDTA, supported by quantum chemical calculations. The most prominent dissociation channel for TRIS is through hydroperoxyl radical formation, whereas the dissociation of MIDA results in the formation of formic and acetic acid. These compounds are well-known to cause DNA modifications, like strand breaks. The present results indicate that buffer compounds may not have an exclusive protecting effect on DNA as suggested previously. KW - DEA KW - DNA KW - Low energy electrons KW - Mass spectrometry PY - 2018 UR - http://pubs.rsc.org/en/content/articlepdf/2018/cp/c7cp07697e DO - https://doi.org/10.1039/c7cp07697e VL - 20 IS - 8 SP - 5578 EP - 5585 PB - Royal Society of Chemistry AN - OPUS4-44703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Kunte, Hans-Jörg A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine protects biomolecules from ionizing radiation: Molecular mechanisms N2 - The compatible solute and osmolyte ectoine is an effective protectant of biomolecules and whole cells against heating, freezing and high salinity. The protection of cells (human Keratinocytes) by ectoine against ultraviolet radiation was also reported by various authors, although the underlying mechanism is not yet understood. We present results on the irradiation of biomolecules (DNA) with ionizing radiation (high energy electrons) in fully aqueous environment in the presence of ectoine and high salt concentrations. The results demonstrate an effective radiation protection of DNA by ectoine against the induction of single strand breaks by ionizing radiation. The effect is explained by an increased in low-energy electron scattering at the enhanced free-vibrational density of states of water due to ectoine, as well as the action of ectoine as an OH-radical scavenger. This was demonstrated by Raman spectroscopy, electron paramagnetic resonance (EPR) and Monte-Carlo simulations (Geant4). T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - Ionizing radiation KW - Ectoine KW - Radiation damage KW - Radiation protection KW - Dosimetry KW - Ectoin KW - Ectoine radiation protection KW - Compatible solute KW - Osmolyte KW - Aqueous solution KW - OH-radical KW - Radical scavenger KW - Hydroxyl radical KW - Hydroxyectoine KW - Ectoine radical scavenger KW - Low energy electrons KW - Geant4 PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446202 N1 - Poster basiert auf: https://nbn-resolving.org/urn:nbn:de:kobv:b43-419332 AN - OPUS4-44620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Standard procedure for the irradiation of biomolecules with radiation of different linear energy transfer T2 - Proceedings of International Radiation Protection Association Conference 2018 America N2 - The damage caused by ionizing radiation to DNA and proteins is the reason to treat cancer by radiation therapy. A better understanding of the molecular processes and quantification of the different damaging mechanisms is the prerequisite to develop more efficient therapies. Hereby the understanding of the processes involved in the damage to DNA are of key interest due to its central role in reproduction and mutation. For radiation with low linear energy transfer (LET), most of the damage is caused by the secondary particles produced by scattering of the ionizing radiation with water. Thereby a multitude of species are produced, whereby especially kinetic low energy electrons, prehydrated electrons, OH-radicals and ions are of importance. With higher LET the relative amount of the direct damaging effects increases. This is especially important considering the increased usage of high LET nucleons in radiation therapy. Therefore, the quantification of the contribution to DNA damage of direct and indirect effects and the different secondary species is of high interest due to the increase of radio biological efficiency when applying high LET radiation. Here we present an approach to investigate the relative contributions to DNA strand break yield for radiation of different LET within a single electron microscope in combination with electron scattering simulations. T2 - XI International Radiation Protection Association Conference 2018 America CY - Havanna, Cuba DA - 16.04.2018 KW - Dosimetry KW - Linear energy transfer KW - Radiation damage KW - LET KW - Electron irradiation KW - Low energy electrons KW - Hydroxyl radicals KW - DEA KW - DET KW - Microdosimetry KW - Geant4 KW - Electron irradiation of DNA KW - DNA PY - 2018 VL - 2018 SP - 1 EP - 5 AN - OPUS4-44848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Irradiation of biomolecules in liquid with electrons of different linear energy transfer N2 - The damage caused by ionizing radiation to DNA and proteins is the reason to treat cancer by radiation therapy. A better understanding of the molecular processes and quantification of the different damaging mechanisms is the prerequisite to develop more efficient therapies. Hereby the understanding of the processes involved in the damage to DNA are of key interest due to its central role in reproduction and mutation. For radiation with low linear energy transfer (LET), most of the damage is caused by the secondary particles produced by scattering of the ionizing radiation with water. Thereby a multitude of species are produced, whereby especially kinetic low energy electrons, prehydrated electrons, OH-radicals and ions are of importance. With higher LET the relative amount of the direct damaging effects increases. This is especially important considering the increased usage of high LET particles in radiation therapy. Therefore, the quantification of the contribution to DNA damage of direct and indirect effects and the different secondary species is of high interest due to the increase of radio biological efficiency when applying high LET radiation. Here we present an approach to investigate the relative contributions to DNA strand break yield for radiation of different LET within a single electron microscope in combination with electron scattering simulations. T2 - International workshop on radiation damage to DNA CY - Aussois, France DA - 27.05.2018 KW - Radiation damage KW - LET KW - Geant4 KW - DNA KW - Radiation therapy KW - Hydroxyl radical KW - Low energy electrons KW - Dosimetry KW - Microdosimetry KW - Electron irradiation KW - Sem KW - Linear energy transfer KW - MCS KW - Monte-Carlo simulations PY - 2018 AN - OPUS4-45103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -