TY - CONF A1 - Rauwolf, M. A1 - Turyanskaya, A. A1 - Roschger, A. A1 - Prost, J. A1 - Simon, R. A1 - Pape, I. A1 - Radtke, Martin A1 - Scharf, O. A1 - Schoonjans, Tom A1 - de Oliveira Guilherme Buzanich, Ana A1 - Sawhney, K. A1 - Wobrauschek, P. A1 - Rocshger, P. A1 - Hofstaetter, J. G. A1 - Streli, C. T1 - Zinc distribution in human bone: Sr-micro X-ray fluorescence imaging of osteoporotic samples N2 - Zn is known to be located in the reactive centers of various enzymes, which play a major role in the mineralization process at sites where new bone formation occurs. In addition, elevated Zn levels are supposed to increase the proliferation rate of osteoblasts [1] and may lead to a stimulation of bone formation in vitro and in vivo [2]. Consequently, Zn seems to play an essential role in bone formation and mineralization through various pathways. We thus expected Zn levels to be altered at sites of extensive bone formation like in the case of fracture healing. We measured the same areas on human bone samples with both a scanning confocal synchrotron radiation induced micro X-ray fluorescence (SR-μXRF) at the FLUO beamline (ANKA) and a full-field Color X-ray Camera at the BAMline (Bessy II) setup in order to find the ideal SR-μXRF imaging method to investigate trace element distributions in bone samples. As zinc is a trace element of special interest in bone, the setups were optimized for Zn detection. The setups were compared concerning count rate, required measurement time and resolution. We could show that the ideal method is depending on the element of interest. While for Ca (a major constituent of the bone with a low energy of 3.69keV for K) the Color X-ray Camera provided us with a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-μXRF was able to sufficiently image the distribution. Biopsies of healing osteoporotic fractures (Vertebral compression fractures (VCFs)) were investigated in regard to their Zn distribution. The samples were measured with a confocal SR-μXRF setup with a 10 μm x 15 μm resolution at the FLUO beamline at ANKA. As we found increased Zn levels, which seemed to be accumulated in narrow structures between bone packages we also investigated thin cuts (4 μm thick) of two sample areas with a higher resolution of 1 μm x 1 μm (monochromatic beam with E= 17 keV) at B16 at Diamond SR facility. We will present the advantages and disadvantages of all three SR-μXRF setups (ANKA FLUO beamline, Bessy II BAMline, and Diamond B16) for imaging elemental distributions in bone with a focus on Zn. We will also show the distribution of Zn in healing VCFs. T2 - XRM2016: 13th International Conference on X-Ray Microscopy CY - Oxford, UK DA - 15.08.2016 KW - Synchrotron KW - BAMline KW - XRF PY - 2016 AN - OPUS4-38765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strüder, L. A1 - Holl, P. A1 - Hartmann, R. A1 - Schlosser, D. A1 - Davis, J. A1 - Schmidt, J. A1 - Huth, M. A1 - Kolak, D. A1 - Radtke, Martin A1 - Nowak, S. A1 - Renno, A. A1 - Grenzer, J. A1 - Abboud, A. A1 - Pietsch, U. A1 - Soltau, H. T1 - High Speed X-ray Imaging and Spectroscopy with pnCCDs: XRF, XRD and PIXE measurements (and others) N2 - For many years pnCCDs have been well known as X-ray detectors for spectroscopic imaging in many fields of science: X-Ray Fluorescence analysis (XRF), X-ray Diffraction (XRD) with light sources in large accelerator facilities as well as with laboratory light sources or with X-rays from celestial sources in X-ray astronomy. A brief introduction in GEXRF (Grazing Emission XRF) measurements with a laboratory laser produced plasma source will be given, PIXE (Particle Induced X-ray Emission) measurements and D2XRF (Double Dispersive X-Ray Fluorescence) and Slicing experiments with pnCCDs coupled to polycapillary optics performed at the BESSY synchrotron will be shown. Energy-dispersive Laue diffraction with ultra-hard X-rays for the analysis of defects in metals will conclude the overview of spectroscopic X-ray imaging measurements in the field of structure and dynamics of matter. T2 - Microscopy & Microanalysis 2016 Meeting CY - Columbus, Ohio, USA DA - 24.07.2016 KW - PnCCD KW - BAMline KW - Synchrotron KW - XRF KW - XRD KW - PIXE PY - 2016 AN - OPUS4-38885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Neri, E. A1 - Reinholz, Uwe A1 - Guerra, M.F. T1 - Following Pt in gold Byzantine tesserae: towards provenance and chronology with SR-XRF N2 - Gold mosaics, made from gold and glass, are one of the best expressions of Late Antique Byzantine and Early Islamic art. The gold alloys, whose composition seems to indicate that gold coins were re-used to fabricate the tesserae, can be used to provide information on the mosaics chronology. Monetary Byzantine gold is in fact characterized by the presence of Pt, which contents in the gold alloy change over time, but Pt must be measured in 0.2-0.4 µm thickness gold leaves that were beaten to be sandwiched between two glass layers. To analyze this samples the D²XRF set-up at the BAMline at the BESSY synchrotron in Berlin was used. The combination of a crystal for wavelength dispersion and an energy resolving single photon counting pnCCD allows the realization of this very simple wavelength dispersive detection system. With this system an MDL of 1 μg/g for the determination of Pt in Au under optimal conditions can be reached. Gold leaf tesserae from nine archaeological sites, covering the period that goes from the 5th c. to the 8th c., were analyzed. The presence of Pt in the majority of the samples confirmed the re-use of coins. The Pt contents separate the samples in three groups, one of which having the same chemical characteristics as the Byzantine gold could be compared to dated coins for chronology. The higher Pt contents for one of other groups suggest T2 - Synchrotron Radiation and Neutrons in Art & Archaeology (SR2A) CY - Chicago, USA DA - 06.09.2016 KW - Synchrotron KW - BAMline KW - XRF KW - Archaeometry KW - D2XRF PY - 2016 AN - OPUS4-38808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Margreiter, R. A1 - Eberhardt, K. A1 - Niemeyer, B. A1 - Strub, E. T1 - Investigation on fire gilding using XRF and NAA N2 - Fire-gilding or amalgam gilding is a historical technique for the gilding of objects. The object to be gilded is coated with an amalgam (a solution of gold (Au) in mercury (Hg)). By heating, the largest part of the Hg is subsequently evaporated and there remains a gold layer, containing still detectable amounts of Hg. The information on the used gilding technique might be crucial for the conservation and preservation of archaeological objects. Therefore, the main objective of this work is the detailed understanding of the behaviour of Hg under conditions of fire gilding. I.e. the understanding of the diffusion and evaporating behaviour of Hg, depending on parameters like substrate material (silver, copper, bronze, brass...), heating temperature and duration, and the resulting Hg depth profiles under these conditions. Secondary objective is the establishment of a measurement protocol for the unambiguous identification of different types of gilding, based solely on non-destructive methods, which can be applied to historical samples. In a first step, fire-gilded samples have been prepared on Cu and Ag sheet metal, respectively. Some of the gildings were produced by a professional goldsmith; another set of samples was produced under laboratory conditions. These samples have been examined with NAA (neutron activation analysis) and SR-XRF (synchrotron radiation induced X-ray fluorescence). First results of these measurements will be presented and discussed. T2 - Synchrotron Radiation and Neutrons in Art & Archaeology (SR2A) CY - Chicago, IL, USA DA - 06.09.2016 KW - Synchrotron KW - BAMline KW - XRF KW - Archaeometry PY - 2016 AN - OPUS4-38766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strub, E. A1 - Margreiter, R. A1 - Eberhardt, K. A1 - Niemeyer, B. A1 - Radtke, Martin T1 - Investigation on fire gilding using XRF and NAA N2 - Fire-gilding or amalgam gilding is a historical technique for the gilding of objects. The object to be gilded is coated with an amalgam (a solution of gold (Au) in mercury (Hg)). By heating, the largest part of the Hg is subsequently evaporated and there remains a gold layer, containing still detectable amounts of Hg. The information on the used gilding technique might be crucial for the conservation and preservation of archaeological objects. Therefore, the main objective of this work is the detailed understanding of the behaviour of Hg under conditions of fire gilding. I.e. the understanding of the diffusion and evaporating behaviour of Hg, depending on parameters like substrate material (silver, copper, bronze, brass...), heating temperature and duration, and the resulting Hg depth profiles under these conditions. Secondary objective is the establishment of a measurement protocol for the unambiguous identification of different types of gilding, based solely on non-destructive methods, which can be applied to historical samples. In a first step, fire-gilded samples have been prepared on Cu and Ag sheet metal, respectively. Some of the gildings were produced by a professional goldsmith; another set of samples was produced under laboratory conditions. These samples have been examined with NAA (neutron activation analysis) and SR-XRF (synchrotron radiation induced X-ray fluorescence). First results of these measurements will be presented and discussed. T2 - NRC-9 CY - Helsinki, Finland DA - 29.08.2016 KW - Synchrotron KW - BAMline KW - Archaeometry PY - 2016 AN - OPUS4-38767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kabelitz, Anke A1 - Rolf, Simone A1 - Riesemeier, Heinrich A1 - Reinholz, Uwe A1 - Emmerling, Franziska T1 - First in situ measurements with a newly developed SR-based ‘Single-shot‘ EXAFS set-up N2 - The newly developed EXAFS set-up comprises both time- and spatially-resolved EXAFS information simultaneously in a single-shot. This facile, stable and scanningless set-up was tested at the BAMline @ BESSY-II (Berlin, Germany). The primary broadband beam is generated by a filter/X-ray-mirror combination (bandpass). The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by an area sensitive detector based on a CCD camera, in a theta - 2 theta geometry. The first in situ measurements were successfully carried out and hereby presented. The case-study involved a well known reaction, in which structural changes are induced over time, and continuously measured. We were able to track structural changes within a 1s time resolution. T2 - European Conference on X-Ray Spectrometry (EXRS) CY - Gothenburg, Sweden DA - 19.06.2016 KW - Synchrotron KW - BAMline KW - EXAFS PY - 2016 AN - OPUS4-38807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ryan, T. M. A1 - Xun, Y. A1 - Cowieson, N. P. A1 - Mata, J. P. A1 - Jackson, A. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Kirby, N. A1 - McGillivray, D. T1 - Combined pressure and temperature denaturation of ribonuclease A produces alternate dentatured states N2 - Protein folding, unfolding and misfolding have become critically important to a range of health and industry applications. Increasing high temperature and high pressure are used to control and speed up reactions. A number of studies have indicated that these parameters can have a large effecton protein structure and function. Here we describe the additive effects of these parameters on the small angle scattering behaviour of ribonuclease A. We find that alternate unfolded structures can be obtained with combined high pressure and temperature treatment of the protein. KW - Protein unfolding KW - Small angle scattering KW - Ribonuclease A KW - High pressure PY - 2016 DO - https://doi.org/10.1016/j.bbrc.2016.03.135 SN - 0006-291X IS - 473 SP - 834 EP - 839 PB - Academic Press Inc Elsevier Science CY - San Diego, USA AN - OPUS4-36052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - Kersten, H. A1 - Glaus, Reto A1 - Gornushkin, Igor B. A1 - Riedel, Jens T1 - Development of a laser induced plasma ion source coupled to ambient mass spectrometry N2 - Only a few years after the invention of the laser, the concept of laser microprobe mass spectrometry (LMMS), a technique which employed intense laser radiation for ion generation, was introduced. In these early studies at excessive irradiation microplasma formation could be observed to be an effective channel for ion formation. However, this plasma generation in vacuum led to undesired distortions of the mass analyzers and, thus, was discarded as an analytical ion source. Under ambient conditions, the surrounding air effectively cools the plasma cloud, making the plasma more controllable. The resulting laser induced plasma is nowadays commonly used in laser induced breakdown spectroscopy (LIBS) applications as excitation source for optical emission spectroscopy experiments. However, little effort has been made to introduce a LIBS plasma as a promising ion source for ambient mass spectrometry. The main hindrance is the transient character of laser induced plasmas that typically only has a lifetime on the order of several microseconds. This drastically reduces the duty cycle of these plasma sources. After these microseconds, the generated ions recombinate to uncharged atoms and even newly bound molecules, making them inaccessible to mass-to-charge analyzers. The advent of high repetition lasers together with the ever growing knowledge about manipulation of charged species at atmospheric pressures allow overcoming these obstacles. This presentation will introduce an ionization scheme using a laser induced plasma as the primary ion source. We believe that this novel ionization strategy will pave the way for future applications in ambient mass spectrometry. T2 - 5. Berliner Chemie Symposium CY - Berlin, Germany DA - 12.04.2016 KW - Laser induced plasma KW - Time-of-flight mass spectrometry KW - Ambient mass spectrometry KW - Ionization KW - Laser induziertes Plasma KW - Flugzeitmassenspektrometer KW - Atmosphärendruckmassenspektrometrie KW - Ionisierung PY - 2016 AN - OPUS4-35732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Glaus, Reto A1 - Demidov, Alexander A1 - Kazakov, Alexander Ya. A1 - Panne, Ulrich T1 - Modeling and diagnostics of laser induced plasma for needs of spectrochemical analysis N2 - Two topics will be addressed: (1) calibration-free LIBS based on Monte Carlo spectral optimization and (2) insight into the possibility of simultaneous elemental and molecular analysis by LIBS. Both topics heavily rely on modeling of laser induced plasma and are closely connected to experiment. In Monte Carlo LIBS (MC LIBS), concentrations are found by fitting model-generated synthetic spectra to experimental spectra. The model of a static uniform isothermal plasma in local thermodynamic equilibrium is employed. Many configurations of plasma parameters and their corresponding spectra are simultaneously generated using a graphic processing unit (GPU). Using the GPU allows for the reduction of computational time down to several minutes for one experimental spectrum that presents the significant progress in comparison with earlier versions of MC LIBS. The method is tested by analyzing industrial oxides containing various concentrations of CaO, Fe2O3, MgO, and TiO2. The agreement within several percent between found and certified concentrations is achieved. Next, a newly developed collisional-dominated model of a laser induced plasma is introduced. The model includes the coupled Navier-Stokes, state, radiative transfer, and material transport equations and incorporates plasma chemistry through the equilibrium approach based on the use of atomic and molecular partition functions. Simple chemical systems are modeled including ablation of Si and C in N2 and Ar atmospheres.The model is used to study evolution of number densities of atomic and molecular species in the expanding plasma plume. The distribution is compared to experimental observations obtained by optical imaging and tomography. To further verify the model, dynamic plasma T2 - FLAMN 2016 CY - St. Petersburg, Russia DA - 27.06.2016 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2016 AN - OPUS4-38775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Glaus, Reto A1 - Panne, Ulrich T1 - Modeling and diagnostics of molecules in laser induced plasmasmodeling and diagnostics of molecules in laser induced plasmas N2 - A collisional-dominated model of a laser induced plasma will be presented which includes the coupled Navier-Stokes, state, radiative transfer, and material transport equations and incorporates plasma chemistry through the equilibrium approach based on the use of atomic and molecular partition functions. Simple chemical systems are modeled including ablation of Si, C, SiC, CaCl2 in N2 or Ar atmospheres with the formation of molecules N2, C2, Si2, CN, Cl2, SiN, SiC, CaCl, CaCl2 and their corresponding positive and negative ions1,2. The initial conditions are specially chosen to emulate the plasma state on the onset of expansion just after the laser pulse had ended. The model is used to study evolution of number densities of atomic and molecular species in the expanding plasma plume. The distribution is compared to experimental observations obtained by optical imaging and tomography. The model and experiment serve to elucidate mechanisms of molecular formation in LIPs, the topic which has recently received much attention in the LIBS community. T2 - LIBS 2016 CY - Chamonix, France DA - 12.09.2016 KW - Plasma diagnostics KW - Plasma physics PY - 2016 AN - OPUS4-38776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -