TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, Rudibert A1 - Maiwald, Michael ED - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual cam-paigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The re-sulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via compara-bly straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the ob-tained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - “Click” chemistry KW - Online NMR KW - Online monitoring PY - 2016 SP - 72 EP - 74 AN - OPUS4-38385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A. A1 - Kutscher, D. J. A1 - Rottmann, L. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Combination of single particle ICP-QMS and isotope dilution analysis for the determination of size, particle number and number size distribution of silver nanoparticles N2 - Single particle ICP-MS (spICP-MS) has gained great influence in the analysis of engineered nanoparticles (NPs) due to its simplicity, speed and ability to obtain a particle number size distribution. Despite its many advantages, the method is hampered by matrix effects affecting the sensitivity of the instruments. Consequently, over- or underestimated particle sizes might be obtained. To overcome these challenges, we present in this work the detection of both Ag isotopes with a quadrupole mass spectrometer for the application of isotopic dilution analysis (IDA) in combination with spICP-MS. Here, the isotopes are measured sequentially using the conventional spICP-MS integration time of 10 ms. Citrate stabilized Ag NPs of a spherical shape with the nominal diameters of 30, 40, 50 and 80 nm have been investigated. The experimental concept of adding ¹⁰⁹Ag+ solutions to the NP suspensions resulted in the NP Spikes being only visible in the ¹⁰⁷Ag trace. Therefore, a maximum of 45% of the particles was detected compared to that by conventional spICP-MS. A modified mass flow equation was applied to determine the particle sizes, particle size distributions and particle number concentrations of various Ag NPs. The addition of different spike concentrations between 0.5 and 4 mg L⁻¹ ¹⁰⁹Ag resulted in similar particle diameters, suggesting that the calculated diameter might be independent of the spike concentration. This would have the advantage that no size information would be needed before the analysis. By analyzing Ag NP suspensions in a simulated seawater matrix, we demonstrate its significant influence on the particle size determination using conventional spICP-MS. A lower transport efficiency of 6.1% was found in the matrix compared to 7.3% without the matrix. In our approach, the addition of the Matrix influenced the NP intensity stronger than the spike signal, resulting in slightly smaller diameters using IDA–spICP-MS with the matrix compared to the results without the matrix. On the other hand, the IDA–spICP-MS approach with the matrix can result in equivalent results for the particle sizes compared with conventional spICP-MS using suspensions without the matrix. Due to the lower instrument sensitivity in the matrix, a diameter of 30 nm was found to be close to the detection limit of the instrument. KW - Ag nanoparticles KW - Single particle ICP-MS KW - Matrix influence KW - Isotope dilution analysis PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376490 DO - https://doi.org/10.1039/c6ja00137h SN - 0267-9477 VL - 31 IS - 10 SP - 2045 EP - 2052 AN - OPUS4-37649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bolz, Axel A1 - Panne, Ulrich A1 - Rurack, Knut A1 - Buurman, Merwe T1 - Glass fibre paper-based test strips for sensitive SERS sensing N2 - We present paper-based test strips for chemical sensing with surface enhanced Raman scattering as detection method. The test strips are prepared on glass fibre paper with silver nanoparticles and a spray method with an airbrush spray setup as a low cost fabrication approach. The properties of the test strips are investigated with three classical Raman analytes rhodamine 6G, 4-aminothiophenol and adenine and optimized for a good reproducibility of the intensity measurements. All test analytes can be identified at low concentrations. For adenine, a concentration series from 10⁻⁴ M to 10⁻⁸ M is measured and the calibration data can be fitted and evaluated with a Langmuir isotherm model. The optimized test strips are applied for the identification of two antibiotics enoxacin and enrofloxacin. KW - surface enhanced Raman scattering KW - glass fibre paper KW - sensing KW - spray KW - Langmuir isotherm PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354878 DO - https://doi.org/10.1039/C5AY03096J SN - 1759-9660 VL - 8 IS - 6 SP - 1313 EP - 1318 PB - The Royal Society of Chemistry AN - OPUS4-35487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - ELISA KW - LC-MS/MS KW - Sulfamethoxazole PY - 2016 DO - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-38530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska ED - de Oliveira Guilherme Buzanich, Ana T1 - Time- and spatial-resolved X-ray absorption fine structure (XAFS) spectroscopy in a single-shot: new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved. KW - Single-shot XAFS KW - Time resolution KW - Spatial resolution KW - Divergent XAFS PY - 2016 DO - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 VL - 23 SP - 769 EP - 776 PB - International Union of Crystallography AN - OPUS4-38370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radtke, Martin A1 - Buzanich, Günter A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, O. A1 - Scholz, Philipp A1 - Guerra, M.F. T1 - Double Dispersive X-Ray Fluorescence (D2XRF) based on an Energy Dispersive pnCCD detector for the detection of platinum in gold N2 - With the aim of improving limits of detection (LOD) of trace elements in a matrix with adjacent fluorescence energies, a simple double dispersive X-ray fluorescence detection system (D2XRF) was constructed to operate at the beamlines BAMline and the mySpot @ BESSY II. This system is based on the combination of a crystal analyzer with an energy resolving single photon counting pnCCD. Without further collimators, the efficient suppression of the background by the pnCCD and the good energy resolution of the crystal results in improved LOD. In first order reflections, an energy resolution of 13 eV for Cu Kα was reached, and an energy range of 1 keV was covered in one shot. This new system was applied to the detection of platinum (Pt) in gold leaves with a LOD of 0.9 mg/kg, which is the lowest attained by totally non-destructive methods nowadays. The presence of Pt in gilded objects from Abydos and Byzantine mosaics provides vital information, as it indicates the alluvial origin of the gold for these examples. KW - Platinum Wavelength dispersive D2XRF KW - Gold Synchrotron XRF PY - 2016 DO - https://doi.org/10.1016/j.microc.2015.10.039 VL - 125 SP - 56 EP - 61 PB - Elsevier Science CY - Amsterdam AN - OPUS4-35777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prost, J. A1 - Windbichler, A. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Radtke, Martin A1 - Pepponi, G. A1 - Migliori, A. A1 - Karydas, A.G. A1 - Czyzycki, M. A1 - Eichert, D.M. A1 - Jark, W.H. A1 - Wobrauschek, P. A1 - Streli, C. T1 - SR-TXRF-XANES of indoor aerosol samples at BESSY II and ELETTRA N2 - Airborne particulate matter is an issue of growing concern in industrialized countries. Particles with diameters of less than 10 μm, in particular those with less 2.5 μm, are of special concern, as they can enter the human lungs and contribute to various cardiovascular and respiratory diseases. As the composition and health effects of airborne particles in urban, rural and industrial outdoor air has been studied abundantly, our focus lies on the analysis of airborne particle samples collected indoors, which may also have a significant effect on human health, depending on the chemical composition of the particles and the chemical bonding state, in which elements are present. This chemical speciation can be obtained using X-ray absorption near edge structure (XANES) analysis, which requires a tunable excitation source and therefore has to be carried out at synchrotron facilities. For this work, samples were collected in office rooms of the Atominstitut building. The BAMline at BESSYII, Berlin, features a double-multilayer monochromator (DMM) and a double-crystal monochromator (DCM). The DCM offers an energy resolution E/ΔE of around 103, which makes it suitable for X-ray absorption fine structure (XAFS) applications. The Atominstitut SR-TXRF vacuum chamber, formerly located at HASYLAB, Beamline L, is now available at the BAMline. The chamber offers a sample changer for up to 8 quartz carriers suitable for total reflection X-ray fluorescence analysis (TXRF) and was equipped with a 30 mm² silicon drift detector (SDD). Aerosol samples were produced using a modified three-stage Dekati™ impactor. For this work, only the coarse (2.5 to 10 μm, Stage 2) and the fine particle fraction (1 to 2.5 μm, Stage 3), were of interest. XANES analysis was performed for the elements Cr, Cu and Zn. Oxidation states of these 3 elements will be presented. The X-ray Fluorescence beamline at ELETTRA operates in partnership with the IAEA an ultra-high vacuum instrument with a 7-axis manipulator suitable for a variety of X-ray analytical techniques, such as grazing incidence X-ray fluorescence analysis (GI-XRF), TXRF, X-ray reflectometry (XRR) and XANES. Samples were produced using a four-stage Sioutas Personal Cascade Impactor. With this impactor, it is possible to produce sizefractionated samples down to the sub-μm range (Stages: A > 2.5 μm, B 1 to 2.5 μm, C 0.5 to 1 μm and D 0.25 to 0.5 μm). Direct sampling was performed on siliconized 25 mm Si wafers suitable for TXRF. Cu-K edge SR-TXRF-XANES analysis was carried out for samples of all impactor stages. Results of these experiments will be shown. T2 - Denver X-ray Conference CY - Rosemont, Illinois, USA DA - 01.08.2016 KW - Synchrotron KW - BAMline KW - XANES KW - Aerosol PY - 2016 AN - OPUS4-38762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hachmöller, O. A1 - Radtke, Martin A1 - Aichler, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Sperling, M. A1 - Walch, A. A1 - Karst, U. T1 - Investigating Wilson´s disease by elemental bioimaging and speciation analysis using LA-ICP-MS, μXRF and XANES N2 - Wilson´s disease (WD) is a rare genetic disorder of the copper metabolism, causing the accumulation of copper in different organs, including the liver, the central nervous system and cornea. This way, WD initiates manifold hepatic, neurological or psychiatric symptoms. To learn about the elemental distribution and present species in WD, liver samples were analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), micro X-ray fluorescence (μXRF) and X-ray absorption near edge structure spectroscopy (XANES). Within this work, LA-ICP-MS was applied to study the distribution of copper and iron in human liver samples, which were collected by a liver biopsy of WD and control patients within a medical investigation. The analysis by LA-ICP-MS was performed with a 213 nm Nd:YAG laser using a spatial resolution of 10 μm and a scan rate of 20 μm/s. In a next step, copper and iron were quantified by LA-ICP-MS using homemade matrix-matched standards made of gelatin. Results showed an inhomogeneous copper and iron distribution in human liver with hotspots up to several thousand micrograms per gram liver within the hepatocytes. Additionally, results for the elemental distribution in WD were validated by means of synchrotron radiation-based μXRF with a beam size of 4 μm at the BAMline at BESSYII (Helmholtz-Zentrum Berlin). Furthermore, XANES was performed to identify the present oxidation states of copper in WD, indicating a mixture of copper(I) and copper(II) within the liver tissue. In the contemporary medicine, rhodanine staining is routinely used to determine the copper distribution in liver tissues. Nevertheless, this method does not provide results with a high sensitivity in comparison to LA-ICP-MS. Therefore, the presented LA-ICP-MS method offers a new possible diagnostic tool. These results may also contribute to a better understanding of Wilson´s disease and its development. T2 - Interdisziplinäres Doktorandenseminar des DAAS CY - Ulm, Germany DA - 06.04.2016 KW - Synchrotron KW - BAMline KW - BESSY KW - XRF KW - XANES PY - 2016 AN - OPUS4-38761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, O. T1 - The Colour X-ray Camera – Basics and Applications of a 2D X-ray Detector N2 - The Color X-ray Camera CXC or SLcam® is an energy-resolving X-ray camera capable of energy- and space-resolved measurements. It consists of a high-speed CCD detector coupled to a polycapil-lary optic that conducts the X-ray photons from the probe to distinct pixels onto the detector. The camera is capable of fast acquisition of spatially and energy resolved fluorescence images. A dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the elements distribution in a sample. It was developed in a joint project with BAM, IFG Berlin and PN Sensors. In this contribution we will mainly discuss the use of the CXC at our beamline, the BAMline at BESSY II and imaging applications of the CXC from different areas, like biology and archaeometry. Additionally new developments for the use of the detector without optics, like wavelength dispersive detection or 1shot-XANES, will be presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - Wien, Austria DA - 20.01.2016 KW - Synchrotron KW - BAMline KW - XRF PY - 2016 AN - OPUS4-38811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manso, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Pessanha, S. A1 - Guerra, M. A1 - Carvalho, M.L. A1 - Reinholz, Uwe A1 - Radtke, Martin T1 - Toxic metals in tattoo inks N2 - Tattooing practice is adopted worldwide and represents a socio-cultural phenomenon, but the injection into the skin of coloring agents, such as metals might pose a serious health problem. Tattoo ink compounds are in general not officially controlled. Moreover, the origins as well as the chemical and toxicological specifications of these coloring agents are hardly known by the producers, the tattooists and by the consumers. In this view, the aim of this study was to characterize the metal composition of tattoo inks available in the market and to draw attention to the associated risk for human health. A set of tattoo inks from the brand Kuro Sumi was analyzed by means of Synchrotron-based X-ray Fluorescence spectrometry (Sy-XRF) at BAMline @ BESSY II and Raman Spectroscopy using the XploRA confocal Raman microscope (785 nm laser). Carbon black, rutile, phtalo blue, phtalo green, helizarin red, helizarin yellow and dioxazine violet were respectively identified in black, white, blue, green, red, yellow and violet inks. However, a wide range of transition and heavy metals, potentially hazardous was revealed by Sy-XRF. A semi-quantitative evaluation has revealed, in some inks, amounts of Cr, Cu, Zn and Pb higher than the allowed according to the resolution adopted by the Council of Europe on the safety of tattoos and permanent make-up (PMU. T2 - Heavy Metals: from the Environment to the Man CY - Lissabon, Portugal DA - 21.03.2016 KW - Synchrotron KW - BAMline KW - XRF KW - Tattoo PY - 2016 AN - OPUS4-38806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -