TY - CONF A1 - Hutchinson, R. A1 - Wilkins, J. A1 - Summerfield, L. A1 - O’Connor, C. A1 - McLachlin, K. A1 - Jakubowski, Norbert A1 - Traub, Heike A1 - Esteban-Fernández, Diego T1 - Performance and data from an elemental microscope - The NWR image N2 - The NWRimage system is the first elemental imaging-specific laser ablation instrument, offering breakthrough sub-micron spatial resolution and ultra-fast signal response for high throughput rates. Laser ablation (LA) systems are used in conjunction with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) systems to detect and analyze tiny amounts of material. As ICP-MS systems have become more sensitive, a need has emerged for LA imaging tools with < 1 micron spatial resolution - a capability not previously available on the market. The NWRimage is provided with a carefully designed aerosol path from point of ablation to injection into the ICP itself. This aerosol path combined with a novel Dual Concentric Injector (DCI) ICP torch, yields < 50ms signal response to accelerate the speed of analysis and enabling enhanced sample throughput. The LA system is used for bio imaging of single cells and medical tissue samples. T2 - Winter Conference on Plasma Spectrochemistry 2016 CY - Tucson, Arizona, USA DA - 11.01.2016 KW - Laser ablation KW - Bio imaging PY - 2016 AN - OPUS4-36513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Hildebrandt, N. T1 - Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots JF - Analytical and Bioanalytical Chemistry N2 - The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. KW - Fluorescence spectroscopy and imaging KW - Multiplexing immunoassay KW - Nanoparticle KW - DNA/RNA KW - BRET/CRET PY - 2016 DO - https://doi.org/10.1007/s00216-016-9434-y SN - 1618-2642 SN - 1618-2650 VL - 408 IS - 17 SP - 4475 EP - 4483 PB - Springer-Verlag CY - Berlin, Heidelberg AN - OPUS4-36546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, Daniela A1 - Büchner, T. A1 - Zeise, Ingrid A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Studying cellular uptake and processing of nanoparticles by LA-ICP-MS N2 - In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining in importance. Latest improvements regarding spatial resolution (down to 1 µm) and washout time make LA-ICP-MS particularly interesting for single cell analysis. Many current nanomaterials can serve as contrast agents in cellular or tissue imaging, drug delivery vehicles or therapeutics, whereas others can cause toxic effects. In order to evaluate nano-bio interactions, the number of nanoparticles (NPs) inside cells as well as their localisation within cellular substructures is of particular interest. LA-ICP-MS was used to study the NP pathway from uptake, via intracellular processing up to cell division. Fibroblast cells were incubated with different metallic NPs under varying experimental conditions. For LA analysis the cells were fixed with formaldehyde and dried. Our results show that LA-ICP-MS is able to localise NP aggregates within cellular substructures. The NPs accumulate in the perinuclear region in the course of intracellular processing, e.g. multivesicular fusion and endosomal maturation, but do not enter the nucleus [1, 2]. A strong dependence of NP uptake on concentration and incubation time was found. Additionally, the number of NPs internalized by individual cells was determined and variations within the cell population became visible. A new laser ablation system providing a short washout time (50 ms) together with small spot sizes (< 4 µm) and high repetition rates allows high spatial resolution applications. First results of cell imaging will be shown. The findings demonstrate the potential of LA-ICP-MS enabling insight into NP uptake and intracellular distribution dependent on experimental parameters. T2 - 8th Nordic Conference on Plasma Spectrochemistry CY - Loen, Norway DA - 05.06.2016 KW - Imaging KW - LA-ICP-MS KW - Cell KW - Nanoparticles PY - 2016 AN - OPUS4-36500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottlieb, Cassian A1 - Grothe, Sven A1 - Wilsch, Gerd T1 - Cluster algorithm for the evaluation of heterogeneous materials by LIBS N2 - The laser-induced breakdown spectroscopy (LIBS) is a fast method to provide multi-elemental analysis of any sample. At the Federal Institute for Materials Research and Testing (BAM) the LIBS technique is applied on building materials to measure ingress profiles of harmful species like chloride and alkalis. The ingress depth and the quantitative amount is important for the evaluation of the potential for damage processes like the alkali-silica reaction or chloride-induced corrosion. Concrete as an example is a highly heterogeneous material with 1/7 cement (major component CaO) and 6/7 aggregates (SiO2) with different grain sizes. Due to a scanning procedure a two dimensional element distribution of a concrete surface can be measured. In order to have an automated Separation method to evaluate heterogeneous materials, different cluster algorithm have been tested. Best results have been achieved with the Expectation-Maximization-Algorithm (EM-Algorithm). T2 - Chemometrics in analytical chemistry CY - Barcelona, Spain DA - 06.06.2016 KW - LIBS KW - Concrete KW - Multivariate analysis PY - 2016 AN - OPUS4-36471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Coping with the EU Nano-definition: abilities and limitations of particle sizing with SAXS N2 - Excelling in brevity but lacking in applicability, the 2011 EU nanomaterial definition has become a source of anguish for scientists and industry alike. Repeated pleas and discussions with our own envoy have demonstrated the strength of their resolve: this definition is unlikely to change. Manufacturers of many materials (cosmetics, pigments, foodstuffs, etc.) will have to characterise and label all their products accordingly, a task still impossible for lack of a clear metrological approach towards this goal. Therefore, the onus has fallen on the scientists to come up with a practicable measurement technique allowing inexpensive classification covering large swathes of the material landscape. Small-angle X-ray Scattering (SAXS) probes the size range in question, and can - with due care - deliver a bulk-averaged volume-weighted size distribution. Like any other real-world measurement method, however, it is not (and can never be) a universal solution. This presentation will clarify the SAXS technique, provide several application examples for nanomaterial characterisation, and will detail the limitations and pitfalls that accompany its abilities. At the end of this presentation, you will have the information to judge whether the technique is amenable to your materials or not. T2 - 2016 TechConnect World Innovation Conference CY - National Harbor, MD, USA DA - 23.05.2016 KW - SAXS KW - presentation KW - EU KW - Nanomaterial PY - 2016 AN - OPUS4-36489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asadujjaman, Asad A1 - Bertin, Annabelle T1 - Aggregation behavior of UCST-Type Poly(Acrylamide-co-Acrylonitrile) copolymer N2 - Thermoresponsive polymers have shown great potential in applications such as bioseparation, drug delivery and diagnostic. Only few thermoresponsive polymers that present an upper critical solution temperature (UCST) in a relevant temperature range, i.e. phase separate from solution upon cooling, have been reported so far. Moreover, the most studied UCST type polymers namely polybetaines are difficult to use under physiological conditions, which significantly restricts their potential applications. Therefore, UCST polymers with sharp and robust phase transition in physiological conditions (in the presence of salts, ions etc.) are highly needed in order to extend the range of applications of this class of polymers. Herein, a robust UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its thermo-induced aggregation behavior in aqueous media was studied. At temperature below the UCST, the copolymer chains were aggregated together. The aggregate size was found to be larger with increasing AN contents and became smaller upon dilution of the copolymer solutions. While above the UCST, the copolymer chains were expanded and weekly associated in solution. The association between the copolymer chains formed smaller aggregates with increasing the AN contents or the dilution of the solutions. A model is proposed to explain such aggregation-association behavior of the Fig. 1. Figure 1. Schematic illustration of the proposed thermos-induced aggregation behavior of the poly(AAm-co-AN) in aqueous solution. T2 - World Congress on Living Polymerizations and Polymers 2016 CY - Budapest, Hungry DA - 29.05.2016 - 03.06.2016 KW - Polymer KW - UCST PY - 2016 AN - OPUS4-36491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hollamby, M. J. A1 - Aratsu, K. A1 - Pauw, Brian Richard A1 - Rogers, S. E. A1 - Smith, A. J. A1 - Yamauchi, M. A1 - Lin, X. A1 - Yagai, S. T1 - Simultaneous SAXS and SANS Analysis for the Detection of Toroidal Supramolecular Polymers Composed of Noncovalent Supermacrocycles in Solution JF - Angewandte Chemie N2 - Molecular self-assembly primarily occurs in solution. To better understand this process, techniques capable of probing the solvated state are consequently required. Smallangle scattering (SAS) has a proven ability to detect and characterize solutions, but it is rarely applied to more complex assembly shapes. Here, small-angle X-ray and neutron scattering are applied to observe toroidal assemblies in solution. Combined analysis confirms that the toroids have a core–shell structure, with a p-conjugated core and an alkyl shell into which solvent penetrates. The dimensions determined by SAS agree well with those obtained by (dried-state) atomic force microscopy. Increasing the number of naphthalene units in the molecular building block yields greater rigidity, as evidenced by a larger toroid and a reduction in solvent penetration into the shell. The detailed structural analysis demonstrates the applicability of SAS to monitor complex solution-based selfassembly. KW - Nanorings KW - Self-assembly KW - Small-angle scattering KW - Supramolecular chemistry KW - Toroids PY - 2016 DO - https://doi.org/10.1002/anie.201603370 SN - 1433-7851 SN - 1521-3773 IS - 128 SP - 10044 EP - 10047 PB - Wiley-VCH Verlag GmbH CY - Weinheim AN - OPUS4-37144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - ICP-MS with Sector Field Devices N2 - This lecture is an introduction to ICP-MS with a double focusing magnetic sector mass analyzer. It offers fundamental background, a thorough discussion of analytical features, and state of the art information on applications. Different types of double focusing instruments also are considered. Specific topics include fundamental aspects of ICP-MS (physical properties of a double focusing instrument, operational characteristics in comparison with quadrupole instruments); analytical characteristics (spectral and non-spectral interferences, figures of merit in low and high resolution modes, blanks and memory effects, HPLC and GC interfaces), and applications (industrial including ultra-pure reagents and alloys, environmental, geological, and biomedical materials). T2 - Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 10.01.2016 KW - High-resolution ICP-MS KW - Figures of merit KW - Interfaces KW - Applications KW - Ultra-trace analysis PY - 2016 AN - OPUS4-37148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina T1 - Nd-sensitized tri-doped UCNP systems N2 - This presentation gives a short overview of the PhD student's research topics and interests, within the scope of the 2016 UPCON Spring School. T2 - UPCON 2016 Spring School CY - Breslau, Poland DA - 25.05.2016 KW - UCNP KW - Nd-sensitizer PY - 2016 AN - OPUS4-37223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Wiesholler, L. M. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Nd as sensitizer in NaYF4:Yb,Er,Nd tri-doped upconversion nanocrystals N2 - In recent years, upconversion nanocrystals (UCNC) have shown great promise for biological and medical applications, mainly because of their excitation in the NIR region, which provides minimum fluorescence background and a rather deep penetration into biological samples, as opposed to excitation in the visible or UV region. Moreover, they show a multitude of characteristic narrow emission bands as basis for ratiometric measurements. Commonly, Yb is the sensitizer of choice, because of a comparatively high absorption cross section, simple energy scheme, and rather efficient energy transfer to the activator, mostly Er, Tm or Ho. A main disadvantage of the use of Yb as sensitizer for biological and medical applications is its absorption band at 976 nm and hence the use of an excitation wavelength at which water has a non-negligible absorption. This can lead to significant sample heating, especially at long illumination times or high excitation power densities, and thus, tissue damage or even cell death. A possible solution is the tri-doping of UCNC with Nd as sensitizer, which can be excited efficiently at around 800 nm, where water absorption is at minimum. The use of Nd as a sensitizer and Yb as a bridge between Nd and the activator Er in NaYF₄ nanocrystals is a relatively new way to overcome the problems of heating of samples in an aqueous environment. Disadvantages can arise from the tri-doping, which can favor non-radiative relaxation due to the more complicated excitation process compared to e.g., simple Yb,Er-doped UCNC, which might lower the upconversion quantum yields in these tri-doped systems. In order to quantify clear advantages, NaYF₄:Yb,Er,Nd nanoparticles were synthesized and spectroscopically studied using an 8 W 804 nm laser diode and a custom-designed Edinburgh instruments FSP980 spectrometer. Wavelength-dependent studies of the emission intensities and the decay kinetics of these tri-doped UCNC at different excitation power densities and excitation pulse widths revealed the clear advantages of preventing water absorption on measurable luminescence signals. We were able to show the influence of pulse width and excitation power density on the luminescence intensities and decay kinetics lifetimes at different emission wavelengths. Additionally, we can clearly discern power density-dependent and independent peaks in the emission spectra. In summary, we demonstrate that the tri-doping of NaYF₄:Yb,Er,Nd nanoparticles is a very promising approach to render UCNC more efficient and to make them better suitable for biological and medical applications requiring measurements in aqueous environment. T2 - UPCON 2016 Conference CY - Breslau, Poland DA - 23.05.2016 KW - UCNP KW - Nd-sensitizer KW - excitation power density PY - 2016 AN - OPUS4-37224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -