TY - CONF A1 - Gornushkin, Igor A1 - Mendez, Cristina A1 - Bordel, Nerea T1 - Investigation of LIBS-RF Plasma for Analytical Spectroscopy N2 - Laser breakdown spectroscopy (LIBS) is a common tool for applications in various fields of science and technology. Originally an atomic analysis technique, LIBS was later extended to molecular analysis due to the transient nature of the laser-induced plasma, which develops from a hot dissociation stage on a nanosecond to several microsecond scale to a relatively cold recombination stage on a scale of 10 to 100 microseconds after breakdown. Molecules formed during the recombination stage or incompletely dissociated after ablation can be efficiently detected, allowing the analysis of "difficult" elements or even molecular isotopes. However, with a small amount of ablated material and a short lifetime of the luminous plasma, analytical signals, especially molecular ones, can be very weak. Several methods have been proposed for reheating the plasma and increasing its lifetime, for example, a two-pulse LIBS or a LIBS combined with microwave radiation or with an electric spark discharge. Here we propose another one, LIBS combined with a capacitively coupled RF discharge at 13.6 MHz. The advantages of this combination are an increase in the lifetime of atomic and molecular emission and operation in a low-pressure atmosphere, which significantly reduces pressure line broadening and allows high-resolution spectroscopy. Another major advantage is operating in a chemically controlled atmosphere that can predictably drive desired chemical reactions. In this presentation, we will show the first results obtained with RF-LIBS combination. These will include separate and joint characterization of LIBS and RF plasmas and evaluation of its potential for elemental and molecular analysis and for plasma enhanced chemical vapor deposition. T2 - SciX 2023 CY - Sparks, USA DA - 08.10.2023 KW - Laser induced breakdown spectroscopy KW - Capacitively coupled discharge KW - RF-LIBS combination KW - Plasma reheating PY - 2023 AN - OPUS4-58592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -