TY - JOUR A1 - Hendriks, L. A1 - Brunjes, R. A1 - Taskula, S. A1 - Kocic, J. A1 - Hattendorf, B. A1 - Bland, G. A1 - Lowry, G. A1 - Bolea-Fernandez, E. A1 - Vanhaecke, F. A1 - Wang, J. A1 - Baalousha, M. A1 - von der Au, Marcus A1 - Meermann, Björn A1 - Holbrook, T. A1 - Wagner, S. A1 - Harycki, S. A1 - Gundlach-Graham, A. A1 - von der Kammer, F. T1 - Results of an interlaboratory comparison for characterization of Pt nanoparticles using single-particle ICP-TOFMS N2 - This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multielement determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e. 194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics. KW - ILC KW - spICP-MS KW - PtNP KW - Nanopartikel PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580353 DO - https://doi.org/10.1039/d3nr00435j SN - 2040-3364 VL - 15 IS - 26 SP - 11268 EP - 11279 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bilsel, M. A1 - Gökçen, T. A1 - Binici, B. A1 - Isleyen, A. A1 - Piechotta, Christian A1 - Kar-wai, A. A1 - Krylov, A. A1 - Miheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - chenko, Irina Tka A1 - Perkola, N. A1 - Lewin, M. A1 - Hua, T. T1 - High polarity analyte(s) in aqueous media: determination of L-PFOA and L-PFOS in ground water N2 - The CCQM-K156 comparison was coordinated by TUBITAK UME on behalf of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) for National Measurement Institutes (NMIs) and Designated Institutes (DIs) which provide measurement services in organic analysis under the 'Comité International des Poids et Mesures' Mutual Recognition Arrangement (CIPM MRA). Perfluoro alkyl substances (PFAS) such as PFOS and PFOA have been used in numerous industrial applications and products. Because of their high stability and resistance to biodegradation, atmospheric photooxidation, direct photolysis and hydrolysis, they are extremely persistent in the environment. The European Union (EU) Water Framework Directive lists PFOS as a priority hazardous substance that poses a significant risk to the aquatic environment. The use of PFOS-containing Aqueous Film-Forming Foams (AFFFs) has been banned since June 2011 in the EU. As relatively water-soluble, effectively non-degradable compounds, PFOS and PFOA migrate to ground water. They are not removed in the conventional drinking water treatment, and therefore cause health risks in polluted areas. The EU Drinking Water Directive and the European Commission has proposed a limit value of 100 ng/L for the sum of 20 PFAS, including PFOS and PFOA. This study provides the means for assessing measurement capabilities for determination of high polarity measurands in a procedure that requires extraction, clean-up, analytical separation and detection. Successful participation in CCQM-K156 demonstrates measurement capabilities in determining mass fraction of organic compounds, with a molecular mass of 200 g/mol to 700 g/mol, having high polarity pKow -2, in a mass fraction range from 0.5 ng/kg to 500 ng/kg in aqueous media. Nine NMIs and DIs participated in the CCQM-K156 key comparison. Seven institutes reported their results. SPE was applied in the sample pre-treatment and LC-MS was applied for detection. All participating laboratories applied isotope dilution mass spectrometry (IDMS) techniques for quantification. Participants established the metrological traceability of their results using certified reference materials (CRMs) from NMIs with stated traceability; where commercially available high purity materials were used the purity was determined in-house. The CCQM-K156 results for L-PFOA and L-PFOS range from 2.75 ng/kg to 5.50 ng/kg with a % RSD of 19.5 % for L-PFOA and from 2.04 ng/kg to 4.45 ng/kg with a % RSD of 21.3 % for L-PFOS. The KCRV was assigned using a Hierarchical Bayesian Random Effects Model (HB REM) estimator from the values reported by six of the participants. One participant result of L-PFOS and one result of L-PFOA were excluded from the KCRV for technical reasons. The KCRV was 4.9 ng/kg ± 0.4 ng/kg for L-PFOA and 3.8 ng/kg ± 0.4 ng/kg for L-PFOS. The six institutes that were included in the assignment of consensus KCRV all agreed within their standard uncertainties. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - PFAS KW - Surface water KW - ILC KW - CCQM PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08016 VL - 59 IS - 1A SP - 1 EP - 3 PB - IOP Publishing AN - OPUS4-58941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Vogl, Jochen T1 - Investigating the differences between MC-ICP-MS and MC-TIMS using conventional 87Sr/86Sr isotope ratios in limestone and slate reference materials N2 - The Federal Institute for Materials Research and Testing (BAM) organised an interlaboratory comparison (ILC) for the characterisation of 87Sr/86Sr isotope ratios in limestone (IAG/CGL ML-3) and Penrhyn slate (IAG OU-6) reference materials by applying the conventional method for 87Sr/86Sr isotope ratios. Samples were sent to thirteen analytical laboratories . Since both samples are powdered, rock materials, dissolution of the sample and Sr isolation via ion exchange chromatography were mandatory. This was done using acid, microwave/acid, bomb/acid digestion or borate fusion and subsequent isolation of Sr by means of commercially available ion exchange resins. In this study, we present and discuss the potential effects that differences between laboratories, and between two instrumental measurement techniques (i.e., MC-ICP-MS and MC-TIMS), may have upon the dispersion of measurement results of the 87Sr/86Sr isotope ratio in the two aforementioned reference materials. We used a statistical mixed effects model to assess the potential effects of both the laboratory and the measurement technique. Consensus values for both materials and associated standard uncertainties {(IAG/CGL ML-3 (0.708245±0.000004) mol/mol; IAG OU-6 (0.729769±0.000008) mol/mol} were estimated by fitting a linear, Gaussian mixed effects model (Pinheiro and Bates 2000) using the R function “lmer” defined in package “lme4”. The statistical results showed that there is no significant effect attributable to differences between instrumental techniques when both materials are considered together, or separately. The p-value of the test of significance of the measurement technique effect is greater than 0.54. For both materials there were statistically significant effects attributable to differences between laboratories when the measurement results for both materials were considered together and separately. This effect is less than 0.00004 in absolute value. However, for neither material did consideration or disregard for such differences induce significant changes in the estimate of the consensus value for the 87Sr/86Sr isotope ratio. Therefore, the effects attributable to differences between instrumental techniques or between laboratories can safely be disregarded when computing the best estimate for the true value of 87Sr/86Sr isotope ratio in these materials, by the community of expert laboratories represented in this study. T2 - GeoAnalysis 2022 CY - Freiberg, Germany DA - 06.08.2022 KW - Isotope ratio KW - Conventional isotope ratio KW - ILC KW - Traceability KW - Uncertainty KW - Isotope reference materials PY - 2022 AN - OPUS4-56848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wittwer, Philipp T1 - Results of ILC Data Treatment N2 - Results of the interlaboratory comparison study for data treatment were presented. They show, that nearly all participants found all the problems in the data. However, only a few corrected the problems, therefore making it one possible point to focus on in the knowledge sharing program. T2 - AGM POLMO Meeting 2024 CY - Paris, France DA - 21.05.2024 KW - JNP POLMO KW - ILC KW - Ringversuch PY - 2024 AN - OPUS4-60166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van de Kreeke, Johannes T1 - EPTIS presentation for CNAS and RMPT workshop, Beijing 2016 N2 - Introduction to EPTIS for Chinese and regional audience T2 - RMPT workshop 2016 CY - Beijing, China DA - 20.09.2016 KW - EPTIS KW - Ringversuche KW - Proficiency testing KW - PT KW - ILC PY - 2016 AN - OPUS4-39004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Andresen, Elina A1 - Matiushkina, Anna T1 - Quantifying the number of total and accessible functional groups on nanomaterials N2 - Inorganic and organic functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are relevant for many key technologies of the 21st century. Decisive for most applications of NM are their specific surface properties, which are largely controlled by the chemical nature and number of ligands and functional groups (FG on the NM surface. The surface chemistry can strongly affect the physicochemical properties of NM, their charge, hydrophilicity/hydrophobicity, reactivity, stability, and processability and thereby their impact on the environment and biological species as well as their possible risk for human health. Thus, reliable, validated, and eventually standardized analytical methods for the characterization of NM surface chemistry, i.e., the chemical identification, quantification, and accessibility of FG and surface ligands 1,2] flanked by interlaboratory comparisons, control samples, and reference materials, 2 ,3 are of considerable importance for process and quality control of NM production and function. This is also important for the safe use of NM the design of novel NM, and sustainable concepts for NM fabrication. Here, we provide an overview of analytical methods for FG analysis and quantification and highlight method and material related challenges for selected NM. Analytical techniques address ed include electrochemical titration methods, optical assays, nuclear magnetic resonance (NMR) and vibrational (IR) spectroscopy, and X ray based and thermal analysis methods. Criteria for method classification and evaluation include the need for a signal generating label, provision of either the total or derivatizable number of FG, and suitability for process and production control. T2 - AUC - Analytical Ultracentrifugation CY - Nuremberg, Germany DA - 22.07.2024 KW - Nanoparticle KW - Particle KW - Microparticle KW - Silica KW - Quantum dot KW - Polymer KW - Surface group KW - Luminescence KW - Quality assurance KW - Synthesis KW - Surface modification KW - ILC KW - Optical assay KW - Functional group KW - Ligand KW - qNMR KW - Conductometry KW - Potentiometry KW - Standardization KW - Reference product KW - Reference material PY - 2024 AN - OPUS4-60749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Sander, P. C. A1 - Andresen, Elina A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Expanding the Toolbox of Simple, Cost-Efficient, and Automatable Methods for Quantifying Surface Functional Groups on Nanoparticles� Potentiometric Titration N2 - Measuring surface functional groups (FGs) on nanomaterials (NMs) is essential for designing dispersible and stable NMs with tailored and predictable functionality. FG screening and quantification also plays a critical role for subsequent processing steps, NM long-term stability, quality control of NM production, and risk assessment studies and enables the implementation of sustainable and safe(r)-by-design concepts. This calls for simple and cost-efficient methods for broadly utilized FGs that can be ideally automated to speed up FG screening, monitoring, and quantification. To expand our NM surface analysis toolbox, focusing on simple methods and broadly available, cost-efficient instrumentation, we explored a NM-adapted pH titration method with potentiometric and optical readout for measuring the total number of (de)protonable FGs on representatively chosen commercial and custom-made aminated silica nanoparticles (SiO2 NPs). The accuracy and robustness of our stepwise optimized workflows was assessed by several operators in two laboratories and method validation was done by cross-comparison with two analytical methods relying on different signal generation principles. This included traceable, chemo-selective quantitative nuclear magnetic resonance spectroscopy (qNMR) and thermogravimetric analysis (TGA), providing the amounts of amino silanes released by particle dissolution and the total mass of the surface coatings. A comparison of the potentiometric titration results with the reporter-specific amounts of surface amino FGs determined with the previously automated fluorescamine (Fluram) assay highlights the importance of determining both quantities for surface-functionalized NMs. In the future, combined NM surface analysis with optical assays and pH titration will simplify quality control of NM production processes and stability studies and can yield large data sets for NM grouping that facilitates further developments in regulation and standardization. KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - Fluorescamine KW - qNMR KW - Comparison KW - ILC PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642371 DO - https://doi.org/10.1021/acsmeasuresciau.5c00062 SN - 2694-250X SP - 1 EP - 13 PB - American Chemical Society CY - Washington, DC AN - OPUS4-64237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Getting it right with photoluminescence quantum yields of molecular and nanoscale luminophores and luminescent particles N2 - Photophysical and mechanistic studies, the comparison of different emitter classes, and the rational design of the next generation of molecular and nanoscale reporters require quantitative photoluminescence measurements and the reliable determination of the key performance parameter photoluminescence quantum yield (QY), i.e., the number of emitted per absorbed photons. This is of special importance for all photoluminescence applications in the life and material sciences in the UV/vis/NIR/SWIR. To improve the reliability and comparability of photoluminescence and QY measurements across laboratories, pitfalls, achievable uncertainties, and material-specific effects related to certain emitter classes must be explored. Also, suitable protocols and reference materials are needed which have been validated in interlaboratory comparisons for different wavelength regions and transparent and scattering luminophores.[1] Based on absolute and relative photoluminescence measurements of functional dyes and nanomaterials like semiconductor quantum dots and rods, spectrally shifting lanthanide upconversion nanocrystals, perovskites, and YAG:Cer converter materials, reliable methods for determining QY of transparent and scattering luminophores, nonlinear emitters, and solid luminescent nanomaterials have been developed.[2,3] Thereby, material- and method-related uncertainties of relative and absolute QY measurements and achievable uncertainties could be quantified for linear and nonlinear UV/vis/NIR/SWIR emitters and lately for also luminescent and scattering materials and solid phoshors, here in an interlaboratory comparison of three labs utilizing integrating sphere spectroscopy.[4,5] In addition, to provide simple tools for a better comparability of QY measurements, recently, a first set of UV/vis/NIR quantum yield standards has been developed and certified with complete uncertainty budgets.[6] In the following, the outcome of these studies will be presented, thereby addressing common pitfalls and providing recommendations on the performance of reliable QY measurements of linear and non-linear emitters in transparent, scattering, and solid samples. T2 - 29th Lecture Conference on Photochemistry (LCP 2024) GDCh CY - Mainz, Germany DA - 16.09.2024 KW - Nanoparticle KW - Nano KW - Luminescence KW - Quality assurance KW - Synthesis KW - Standardization KW - Reference material KW - Quantum yield KW - Fluorescence KW - Reference data KW - Integrating sphere spectroscopy KW - ILC KW - Converter material KW - YAG:Ce KW - Optoceramic PY - 2024 AN - OPUS4-61075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Measurements of Photoluminescence Quantum Yields of Scattering LED Converter Materials N2 - How to Get it Right with the Absolute Measurement of Photoluminescence Quantum Yields of Scattering LED Converter Materials Saskia Fiedler+,a, Florian Frenzel+,a, Christian Würth a, Isabella Tavernaro a, Michelle Grüne c, Stefan Schweizer c,d, Axel Engel e, and Ute Resch-Genger a* a Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany; email: ute.resch@bam.de b Present address: Photonic Materials, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands c Faculty of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494, Soest, Germany d Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Lübecker Ring 2, 59494, Soest, Germany e Schott AG Technical Services, Hattenbergstrasse 10, D-55122 Mainz, Germany Optical measurements of scattering materials such as luminescent nano- and microparticles and phosphors dispersed in liquid and solid matrices play an important role in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. A key performance parameter is the photoluminescence quantum yield QY, i.e., the number of emitted per number of absorbed photons. QY of transparent luminophore solutions can be obtained relative to a fluorescence QY standard of known QY, meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like nanoparticle dispersions, phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Despite the need for reliable absolute QY measurements, no interlaboratory comparison (ILCs) on measurement uncertainties has been performed and scattering standards with known QY are not available. We present the results of an ILC of 3 labs from academia and industry on measurements of transparent and scattering dye solutions and solid phosphors and converter materials like YAG:Ce optoceramics with commercial stand-alone integrating sphere setups of different illumination and detection geometries. Special emphasis was dedicated to the influence of measurement geometry, optical properties of the blank for determining the number of incident photons absorbed by the sample, and sample-specific surface roughness. Matching QY values could be obtained for transparent dye solutions and scattering dispersions with a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences of more than 20 %. Based on our data, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder as blanks. T2 - eMRS CY - Strasbourg, France DA - 26.05.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Quantum yield KW - NIR KW - Characterization KW - Electron microscopy KW - Film KW - Integrating sphere spectroscopy KW - Calibration KW - Lifetime KW - Advanced materials KW - LED converter KW - YAG:Ce KW - ILC KW - Measurement uncertainty KW - Absolute quantum yield PY - 2025 AN - OPUS4-63327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Alasonati, E A1 - Bartczak, D A1 - Altmann, Korinna A1 - Giovannozzi, A T1 - Towards Standardised Micro and Nanoplastics Analysis via Interlaboratory Comparisons: First Outlook of the VAMAS TWA 45 P3 Project N2 - This talk is part of the stakeholder workshop of the PlasticTrace project held in September 2025 in Oslo. The presentation shows first results of the VAMAS ILC on nanoplastics. PP nanoparticles were given to the participants. These were asked to measure the mass or particle number or size of the PP nanoplastics. Various techniques such as DLS, FFF, Py-GC/MS, TED-GC/MS, PTA were used. T2 - Stakeholder Workshop PlasticsTrace CY - Online meeting DA - 09.09.2025 KW - Nanoplastics KW - ILC KW - DLS KW - Polypropylene PY - 2025 AN - OPUS4-64714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -