TY - JOUR A1 - You, Yi A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Spatial, temporal, and spectral characterization and kinetic investigations of a high repetition-rate laser-induced micro-plasma in air JF - Journal of Analytical Atomic Spectrometry N2 - Advances in laser-induced plasmas have enabled various rapid and simple analytical applications. Especially, their uses in the analyses of condensed-phase samples have drawn significant attention in the past few decades. Depending on the laser energy per pulse, various analytical goals can be achieved. Laser-induced airborne plasmas allow direct analysis of species in ambient air. Importantly, all of these applications are based on a fundamental understanding of the laser–medium interaction. Recent developments of diode-pumped solid-state lasers offer an alternative to conventional powerful, yet bulky lasers, which can specifically operate at high Repetition rates. Although these lasers deliver much lower power per pulse (mJ compared to mJ), the outstanding repetition rates offer significant improvement to meet statistical needs in some cases. In the present work, a mJ-laserinduced airborne plasma was characterized through optical emission analysis. By using a ns-timegated image detector coupled with specific bandpass filters, spatially, temporally, and spectrally resolved plasma images were recorded. Compared to conventional mJ-laser-induced plasmas, the one induced by mJ-lasers demonstrated unique features during its evolution. Specifically, measurements of the distribution of ionic and atomic species revealed distinctive energy/matter transfer processes during early ignition of the plasma. Meanwhile, dynamic investigations suggested subsequent matter transport in the later stage. KW - Laser-induced plasma KW - Plasma KW - DPSS-laser PY - 2019 UR - https://pubs.rsc.org/en/content/articlehtml/2019/ja/c9ja00163h DO - https://doi.org/10.1039/C9JA00163H SN - 0267-9477 VL - 34 IS - 8 SP - 1618 EP - 1629 PB - Royal Society of Chemistry CY - London AN - OPUS4-48622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. T1 - Quantitative Analysis of Pharmaceutical Drugs Using a Combination of Acoustic Levitation and High Resolution Mass Spectrometry JF - Analytical Chemistry N2 - A combination of acoustic levitation, laser vaporization, and atmospheric pressure chemical ionization mass spectrometry (APCI-MS) is presented in this study that enabled sensitive analysis of pharmaceutical drugs from an aqueous sample matrix. An unfocused pulsed infrared laser provided contactless sample desorption from the droplets trapped inside an acoustic levitator by activation of the OH stretching band of aqueous and alcoholic solvents. Subsequent atmospheric pressure chemical ionization was used between the levitated droplet and the mass spectrometer for postionization. In this setup, the unfocused laser gently desorbed the analytes by applying very mild repulsive forces. Detailed plume formation studies by temporally resolved schlieren experiments were used to characterize the liquid gas transition in this process. In addition, the role of different additives and solvent composition was examined during the ionization process. The analytical application of the technique and the proof-of-concept for quantitative analysis were demonstrated by the determination of selected pharmaceutical drugs in aqueous matrix with limits of quantification at the lower nanomolar level and a linear dynamic range of 3–4 orders of magnitude. KW - Atmospheric Pressure Chemical Ionization KW - Ultrasonic Levitation KW - Mass Spectrometry KW - Laser Desorption PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c00762 VL - 93 IS - 15 SP - 6019 EP - 6024 PB - ACS AN - OPUS4-52470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. A1 - Riedel, Jens T1 - VUV Photodissociation Induced by a Deuterium Lamp in an Ion Trap JF - Journal of the American Society for Mass Spectrometry N2 - Tandem mass spectrometry represents an important analytical tool to unravel molecular structures and to study the gas-phase behavior of organic molecules. Besides commonly used methods like collision-induced dissociation and electron capture or transfer dissociation, new ultraviolet light–based techniques have the potential to synergistically add to the activation methods. Here, we present a new simple, yet robust, experimental design for polychromatic activation of trapped ions using the 115–160 nm output of a commercially available deuterium lamp. The resulting continuous dissociative excitation with photons of a wide energy range from 7.7 to 10.8 eV is studied for a comprehensive set of analyte classes in both positive and negative ion modes. While being simple, affordable, compact, and of low maintenance, the new setup initiates fragmentation of most precursor ions via their known dissociation pathways. Additionally, some new fragmentation patterns were discovered. Especially, electron loss and electron capture reactions with subsequent fragmentations were observed. For oligonucleotides, peptides, carbohydrates, and organic dyes, in comparison to collision-induced dissociation, a significantly wider fragment distribution was obtained, resulting in an information increase. Since the individual photons carry enough energy to post-ionize the nascent fragments, a permanent vacuum ultraviolet light exposure inside the ion trap potentially goes along with a general increase in detection capability. KW - Fragmentation activation KW - Vacuum ultraviolet (VUV) light KW - Mass spectrometry KW - Tandem MS PY - 2019 DO - https://doi.org/10.1007/s13361-019-02282-8 SN - 1044-0305 VL - 30 IS - 10 SP - 2114 EP - 2122 PB - Springer Nature CY - Heidelberg AN - OPUS4-48756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Jens A1 - Larsson, H. A1 - Temps, F. A1 - Hartke, B. T1 - Resonance dynamics of DCO (<(X over tilde>(2)A') simulated with the dynamically pruned discrete variable representation (DP-DVR) JF - THE JOURNAL OF CHEMICAL PHYSICS N2 - Selected resonance states of the deuterated formyl radical in the electronic ground state X^2A´ are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map Imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D-C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps. KW - Reaction dynamics KW - Spectroscopy KW - Quantum state PY - 2018 DO - https://doi.org/10.1063/1.5026459 SN - 0021-9606 VL - 148 IS - 20 SP - 204309-1 EP - 204309-15 PB - AIP publishing CY - New York AN - OPUS4-45345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Riedel, Jens T1 - Laser-spark ionization mass spectrometry N2 - A versatile ionization scheme for atmospheric pressure MS is presented. It is based on a quasi-continuous laser-induced plasma (LIP), generated by a 26 kHz pulsed DPSS-laser, which is ignited in front of the MS inlet. Analytes are determined with different sampling regimes, comprising either an ambient desorption/ionization mechanism, a liquid-phase or gas-phase sample introduction. The MS signal closely resembles the ionization behavior of APCI-like plasma-based sources, such as DBD or DART. Though LIPs are known to efficiently atomize/ionize any sample material, mass spectra of intact molecular ions are recorded, exhibiting low fragment-ion content. To understand this contradictory behavior, the plasma properties are investigated that lead to the formation of molecular ions. Comprehensive studies include optical emission spectroscopy, shadowgraph imaging and mass spectrometry diagnostics. The results show that the ionization of analyte does not occur in the plasma itself, but in the cold adjacent gas layer. The pulsed character of LIPs induces an expanding shockwave, which concentrically expands around the plasma core and sweeps the molecules toward the plasma edges, where they are ionized either directly by the self-emission of the hot core or via interaction with secondary reactants. However, this unidirectional transport causes a rarefaction inside the plasma center, which leads to a decrease in plasma intensity and number density. Thus, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favorable. Besides gas replenishing, we demonstrate the beneficial use of an acoustical standing wave inside an ultrasonic resonator on the performance of the LIP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark ionization KW - Laser-induced plasma KW - Ambient mass spectrometry KW - DPSS laser PY - 2018 AN - OPUS4-44492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Bierstedt, Andreas A1 - Volmer, D. A1 - Riedel, Jens T1 - Airborne laser-spark ion source for direct microfluidic coupling N2 - The development and improvement of new ionization techniques for mass spectrometry often requires dedicated, specific sampling approaches. Recently, a novel ionization scheme for ambient MS has been introduced based on a quasi-continuous laser-induced plasma, which was ignited directly before the MS inlet. This setup combines the general advantages of ambient ionization, provides electro neutrality, sufficient duty cycle and a ubiquitous plasma medium. A high repetition rate DPSS laser (Conqueror 3-LAMBDA, Nd:YVO4, 1 - 500 kHz, average output power: 12 W at 50 kHz, Compact Laser Solutions GmbH, Germany) and the corresponding optomechanical system were installed on an optical breadboard above the inlet of a LCQ DecaXP ion trap mass spectrometer. The quasi-continuous airborne plasma was ignited inside the sprayed sample in front of the inlet via focused laser irradiation. The introduction of liquid samples into laser-induced plasmas requires higher plasma power during solvent evaporation as compared to gaseous samples. This increased demand was approached via a two-fold strategy: Firstly, an alternative, more powerful, laser plasma driven by the fundamental instead of the second harmonic wavelength was implemented, which provided a 10-fold increase of signal intensity, while maintaining the same reagent ion pattern as the previous plasma. Protonated water clusters [(H2O]nH]+, NH4+ as well as charge transfer promoting ion O2+, dominated the reagent ion mass spectrum. Secondly, a miniaturized nebulizer was used to minimize the size of the plasma quenching solvent droplets. The result of these improvements was a new and very stable ion source for direct microfluidic coupling. A variety of samples demonstrated the performance of the ion source. A laser-driven plasma was shown to be a powerful ion source for gaseous and solid samples. For the first time, liquid samples were examined using the novel source. In addition to demonstrating an improved strategy for igniting the laser plasma, this contribution also covers the miniaturization of the spray source for enhanced ionization, while minimizing sample consumption via a microfluidic spray systems. T2 - International Mass Spectrometry Conference 2018 CY - Florence, Italy DA - 26.08.2018 KW - Airborne KW - Laser-spark KW - Laser-induced plasma KW - Microfluidic KW - Mass Spectrometry PY - 2018 AN - OPUS4-45839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Airborne laser-spark for ambient desorption/ionization of liquids N2 - The development and enhancement of new ionization techniques for mass spectrometry often needs to be custom-tailored for specific sampling approaches. Here, a direct sampling ionization technique is presented for ambient mass spectrometry. Ambient mass spectrometry based techniques are typically used to analyze samples in their native states without sample pretreatment. This new design is based on a quasi-continuous airborne plasma which is ignited inside the particulate air via a focused laser irradiation. Desorption and ionization of the analyte molecules are achieved by the laser plasma without reaching the plasma. The ionization process is induced by interaction with nascent ionic fragments, electrons and ultraviolet photons in the plasma vicinity. Previously, this method was solely used for the characterization of solid and gaseous analytes. The sample introduction was occurred via thermal desorption and headspace analysis. This study focuses on the potential applicability of liquid samples. In comparison to previous approaches, the usage of liquid samples has an impact on the stability of typically used plasma of 532 nm. It was necessary to realize an alternative plasma using light of the fundamental wavelength of 1064 nm. That new plasma resulted in a significant more stable and bright plasma and the first laser plasma ionization spectrum was recorded for an analyte in the condensed phase with a mass spectrometer of type LCQ DecaXP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark KW - Laser-induced plasma KW - Ambient mass spectrometry KW - Ambient desorption/ionization KW - DPSS laser PY - 2018 AN - OPUS4-44493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Riedel, Jens A1 - Volmer, D. T1 - High resolution mass spectrometry of acoustically-levitated droplets N2 - Acoustic levitators generate acoustic standing waves between a transducer and a concave reflector. These acoustic waves are separated by multiple integer numbers of half wavelengths. Thus, acoustic levitation is the effect that a small volume (5 nL-10 μL) of sample can be levitated in a contact-free manner. Until now, levitation in analytical chemistry has primarily been associated with optical techniques such as Raman, X-Ray or UV/Vis spectroscopy. Less common applications are combinations of acoustic levitation with mass spectrometry. One reason for this being that the acoustic field surrounding the droplet effectively shields the sample, thus making it inaccessible to most ambient ionization techniques. Any effective investigation of acoustically-levitated droplets therefore requires the physical removal of some of the sample from the confine region of the acoustic trap before analysis. T2 - DGMS 2019 CY - Rostock, Germany DA - 10.03.2019 KW - Acoustical Levitation KW - Mass Spectrometry KW - Ambient Ionization KW - Laser PY - 2019 AN - OPUS4-47552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ashokkumar, Pichandi A1 - Bell, Jérémy A1 - Buurman, Merwe A1 - Rurack, Knut T1 - Analytical platform for sugar sensing in commercial beverages using a fluorescent BODIPY "light-up" probe JF - Sensors and Actuators B: Chemical N2 - Because of the globally increasing prevalence of diabetes, the need for accurate, efficient and at best miniaturized automated analytical systems for sugar detection in medical diagnostics and the food industry is still urgent. The development of molecular probes for sugars based on boronic acid receptors offers an excellent alternative to the kinetically slow enzyme-based sugar sensors. Moreover, by coupling such chelating units with dye scaffolds like BODIPYs (boron–dipyrromethenes), highly fluorescent sugar sensing schemes can be realized. In this work, a boronic acid-functionalized BODIPY probe was developed, which binds selectively to fructose’s adjacent diols to form cyclic boronate esters. Placement of an amino group in direct neighborhood of the boronic acid moiety allowed us to obtain a broad working range at neutral pH, which distinguishes the probe from the majority of systems working only at pH > 8, while still meeting the desired sensitivity in the micro-molar range due to a pronounced analyte-induced fluorescence increase. To enhance the applicability of the test in the sense described above, integration with a microfluidic chip was achieved. Here, fructose was selectively detected by fluorescence with similar sensitivity in real time on chip, and an assay for the straightforward detection of sugar in (colored) sodas without sample clean-up was established. KW - BODIPY dyes KW - Boronic acid KW - Fluorescence KW - Microfluidics KW - Sugars PY - 2018 DO - https://doi.org/10.1016/j.snb.2017.09.201 SN - 0925-4005 VL - 256 SP - 609 EP - 615 PB - Elsevier CY - Amsterdam AN - OPUS4-43102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens A1 - You, Yi A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. T1 - Airborne Laser-Induced Plasma as an Ambient Desorption/Ionization Source for Mass Spectrometry and its Characterization N2 - Laser-induced plasma (LIP) has drawn significant amount of attentions in the past decades, particular in elemental analyses for solid or liquid samples. Through proper focusing of the highly energetic laser beam, the plasma can also be ignited in the ambient air, where airborne analytes can be ionized. Such an effect enabled the use of airborne LIP as an ambient ionization source for mass spectrometric analyses. In contrast to other ambient desorption/ionization sources, airborne LIP does not require a specific discharge medium or expensive gas stream. Meanwhile, the airborne LIP produces reagent ion species for both proton-transfer and charge-transfer reactions in addition to the vacuum ultraviolent photons that are capable of promoting single photon ionization, which can be utilized to ionize polar and non-polar analytes. In order to gauge the analytical performance of airborne LIP, it is critical to understand the undergoing chemistry and physics during and after the plasma formation. Due to the ambient nature of airborne LIP, the variations of air composition and flow strongly affect the plasma behaviors. Preliminary result suggested the addition of a laminar flow of nitrogen gas favored the formation of protonated species (MH+) against the molecular ones (M+). Although the gas addition approach cannot fully tune the ionization process towards the specific production of pseudo-molecular species versus molecular ones, the alternation of molecular ion formation can be used for analyte recognitions through post processing of the ion patterns. The pulsed character of the used lasers makes the reagent ion equilibrium both transient- and highly fluid-dynamically controlled. The acoustic shock-waves induced by the airborne LIP get affected by an applied gas streams towards the plasma center, influencing the molecular-ion and ion-ion interactions in the near proximity of the plasma. To understand the airborne LIP formation, the temporally and spatially resolved optical emission spectra were recorded. The results will be correlated to time-resolved mass-spectrometric investigations of the ion profile during different stages of the plasma formation. As one example, the formation of pyrylium ion originating from aromatic compounds will be highlighted. T2 - SciX 2018 CY - Atlanta, GA, USA DA - 21.10.2018 KW - Laser-Induced Plasma KW - Ambient Desorption/Ionization KW - Mass Spectrometry KW - Characterization PY - 2018 AN - OPUS4-46376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - You, Yi A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. A1 - Riedel, Jens T1 - Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples JF - Analytical Chemistry N2 - An airborne high repetition rate laser-induced plasma was applied as a versatile ambient ionization source for mass-spectrometric determinations of polar and nonpolar analytes in solution. The laser plasma was sustained between a home-built pneumatic nebulizer and the inlet capillary of an Orbitrap mass spectrometer. To maintain stable conditions in the droplet-rich spray environment, the plasma was directly fed by the fundamental output (λ = 1064 nm) of a current state-of-the-art diode-pumped solid-state laser. Ionization by the laser-driven plasma resulted in signals of intact analyte ions of several chemical categories. The analyte ions were found to be fully desolvated since no further increase in ion signal was observed upon heating of the inlet capillary. Due to the electroneutrality of the plasma, both positive and negative analyte ions could be formed simultaneously without altering the operational parameters of the ion source. While, typically, polar analytes with pronounced gas phase basicities worked best, nonpolar and amphoteric compounds were also detected. The latter were detected with lower ion signals and were prone to a certain degree of fragmentation induced during the ionization process. All the described attests the laser-induced microplasma by a good performance in terms of stability, robustness, sensitivity, and general applicability as a self-contained ion source for the liquid sample introduction. KW - Laser KW - Laser-induced plasma KW - Ambient ionization KW - Mass Spectrometry PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00329 SN - 0003-2700 VL - 91 IS - 9 SP - 5922 EP - 5928 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-47939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Beitz, T. A1 - Panne, Ulrich A1 - Löhmannsröben, H.-G. A1 - Riedel, Jens T1 - Laser ionization ion mobility spectrometric interrogation of acoustically levitated droplets JF - Analytical and Bioanalytical Chemistry N2 - Acoustically levitated droplets have been suggested as compartmentalized, yet wall-less microreactors for high-throughput reaction optimization purposes. The absence of walls is envisioned to simplify up-scaling of the optimized reaction conditions found in the microliter volumes. A consequent pursuance of high-throughput chemistry calls for a fast, robust and sensitive analysis suited for online interrogation. For reaction optimization, targeted Analysis with relatively low sensitivity suffices, while a fast, robust and automated sampling is paramount. To follow this approach, in this contribution, a direct coupling of levitated droplets to a homebuilt ion mobility spectrometer (IMS) is presented. The sampling, Transfer to the gas phase, as well as the ionization are all performed by a single exposure of the sampling volume to the resonant output of a mid-IR laser. Once formed, the nascent spatially and temporally evolving analyte ion cloud needs to be guided out of the acoustically confined trap into the inlet of the ion mobility spectrometer. Since the IMS is operated at ambient pressure, no fluid dynamic along a pressure Gradient can be employed. Instead, the transfer is achieved by the electrostatic potential gradient inside a dual ring electrode ion optics, guiding the analyte ion cloud into the first stage of the IMS linear drift tube accelerator. The design of the appropriate atmospheric pressure ion optics is based on the original vacuum ion optics design of Wiley and McLaren. The obtained experimental results nicely coincide with ion trajectory calculations based on a collisional model. KW - Ambient pressure laser ionization KW - Ionmobility spectrometry KW - Acoustic levitation KW - ion optics PY - 2019 DO - https://doi.org/10.1007/s00216-019-02167-5 VL - 411 IS - 30 SP - 8053 EP - 8061 PB - Springer CY - Heidelberg AN - OPUS4-50132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Nowak, S. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-Resolution Atomic Absorption Spectrometry Combined With Machine Learning Data Processing for Isotope Amount Ratio Analysis of Lithium JF - Analytical Chemistry N2 - An alternative method for lithium isotope amount ratio analysis based on a combination of high-resolution atomic absorption spectrometry and spectral data analysis by machine learning (ML) is proposed herein. It is based on the well-known isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by the state-of-the-art high-resolution continuum source graphite furnace atomic absorption spectrometry. For isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions, ranging from 0.06 to 0.99 mol mol–1, previously determined by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The calibration ML model was validated with two certified reference materials (LSVEC and IRMM-016). The procedure was applied toward the isotope amount ratio determination of a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. The results of these determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9 to 6.2‰. This precision was sufficient to resolve naturally occurring variations, as demonstrated for samples ranging from approximately −3 to +15‰. To assess its suitability to technical applications, the NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification. The results obtained were metrologically compatible with each other. KW - Lithium KW - Isotope KW - Machine learning KW - Algorithms KW - Reference material KW - AAS KW - Atomic Absorption Spectrometry PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c00206 SN - 1520-6882 VL - 93 IS - 29 SP - 10022 EP - 10030 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-53028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Gornushkin, Igor B. A1 - Riedel, Jens A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - "Keine Dienstmagd" - Analytical Sciences in Action N2 - Analytical Sciences has developed from Ostwald’s “unentbehrlichen Dienstmagd” to a chemical discipline at the core of many of today’s fundamental and applied scientific problems and innovations. An atomic or molecular understanding of basic processes in chemistry, soft matter physics, materials and life science is enabled only through new analytical methods and instrumentation. Similar observations can be found for pressing sociopolitical conflicts of the future: A rational discussion of global climate change or new energy sources is only possible with reliable analytical results. Progress in Analytical Sciences is only possible if the underlying interdisciplinary character is acknowledged and valued. The talk will illustrate the scope of modern Analytical Science through examples from process analysis relevant to modern process intensification and industry 4.0 to bioanalysis and the use of synchrotron radiation to elucidate fundamental reactions materials. T2 - MChG Talk CY - Technische Universität München, Germany DA - 27.11.2018 KW - Analytical Sciences PY - 2018 AN - OPUS4-46940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Giovannozzi, A. A1 - Rossi, A. A1 - Kovac, J. A1 - Ekar, J. A1 - Goenaga-Infante, H. A1 - Clarkson, C. A1 - Clifford, C. A1 - Cant, D. A1 - Minelli, C. A1 - Reithofer, M. A1 - Lindner, G. A1 - Venzago, C. A1 - Bohmer, N. A1 - Drexler, C.-P. A1 - Schedler, U. A1 - Thiele, T. A1 - Lechart, F. A1 - Kästner, B. A1 - Sjövall, P. A1 - Johnston, L. A1 - Tan, Gunnar A1 - Radnik, Jörg T1 - Standardised Measurements of Surface Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, opto-electronics, and information storage which improve the quality of life and European prosperity. NP function, performance, interaction with biological species, and environmental fate are largely determined by their surface functionalities. Standardized repeatable surface characterization methods are therefore vital for quality control of NPs, and to meet increasing concerns regarding their safety. Therefore, industry, regulatory agencies, and policymakers need validated traceable measurement methods and reference materials. This calls for fit-for-purpose, validated, and standardized methods, and reference data and materials on the surface chemistry of engineered NPs. Here, we present a concept for the development of such standardized measurement protocols utilizing method cross-validation and interlaboratory comparisons (ILCs) with emphasis on both advanced measurement methods such as quantitative Nuclear Magnetic Resonance (qNMR), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) and cost-efficient, non-surface specific methods like optical assays and electrochemical titration methods. T2 - European Partnership on Metrology 2023 Review Conference CY - Amsterdam, Netherlands DA - 07.11.2023 KW - Surface chemistry KW - Quality assurance KW - Traceability PY - 2023 AN - OPUS4-59142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -