TY - CONF A1 - Soruco Aloisio, Ricardo A1 - Klaus, Christian A1 - Klaus, Christian T1 - Auf dem Weg zu einer digitalen Qualitätsinfrastruktur - Use Case Wasserstofftankstelle N2 - Im Rahmen der von der BAM und anderen Partnern ins Leben gerufenen Initiative „Digitale Qualitätsinfrastruktur“ liegt der Fokus u.a. auf der Entwicklung von neuen Zertifizierungsworkflows. Dabei ist eine besondere Bedeutung dem Zusammenführen von Operational Technology (OT) und Informationstechnik (IT) beizumessen. Zur Datenintegration aus der Sensor-Feldebene einer Versuchs-wasserstofftankstelle wurde eine solche Infrastruktur zunächst in einer Laborumgebung aufgebaut. T2 - Hannover Messe 2024 - Speakers Corners CY - Hannover, Germany DA - 23.04.2024 KW - IT KW - OT KW - Infrastruktur KW - Datenintregration KW - VPN KW - Verwaltungsschale KW - Open Source KW - Software PY - 2024 AN - OPUS4-59930 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Sicherheitstechnische Untersuchungen von Wasserstoff Freistrahlflammen bei Hochdruck im Realmaßstab N2 - Wasserstoff als Energieträger gewinnt zunehmend an Bedeutung. Die Untersuchung von Störfallauswirkungen mit Wasserstoff rückt somit stärker in den Fokus. Da Wasserstoff meist unter Druck gelagert und transportiert wird, ist ein zu betrachtendes Szenario die Freisetzung aus einer Leckage mit anschließender Zündung. Die daraus resultierende Freistrahlflamme (Jet Flame) muss hinsichtlich der in die Umgebung emittierten Wärmestrahlung charakterisiert werden. In der Literatur existieren bereits verschiedene Modelle, welche jedoch vermehrt auf Daten aus Kohlenwasserstoffflammen mit geringem Impuls basieren. Zur Überprüfung dieser Modelle wird im Zuge des BAM internen H2 Jet Flame Projektes die sicherheitstechnische Untersuchung von impulsbehafteten Wasserstoff Freistrahlflammen vorgenommen. Hierfür finden Versuche im Realmaßstab auf dem Testgelände Technische Sicherheit der BAM (BAM-TTS) statt. Gegenstand der Untersuchungen ist die Beurteilung der Auswirkungen von realistischen Freisetzungsszenarien hinsichtlich der Flammengeometrie und der freigesetzten Wärmestrahlung. Dabei werden Parameter wie Freisetzungswinkel, Leckagedurchmesser (z.Zt. 1 mm bis 30 mm), Druck (z.Zt. bis max. 250 bar) und Massenstrom (bis max. 0,5 kg/s) variiert. Zusätzlich können auch Einflüsse wie Art der Zündung, Zündort sowie Zündung mit zeitlichem Verzug untersucht werden. Gewonnene Erkenntnisse werden mit den Ergebnissen bereits vorhandener Modelle verglichen und diese im Bedarfsfall weiterentwickelt. Insbesondere wird der Fokus auf die Modellierung der freigesetzten Wärmestrahlung von Wasserstoffflammen gelegt. Herausforderung dabei stellt die IR-Vermessung und Modellierung von Sichtmodellen der Flammen dar. Die Visualisierung der Flammengeometrie wird mit Hilfe mehrerer Infrarot Kamerasystemen (aus mindestens zwei Blickwinkeln) vorgenommen. Bisherige Messungen, die in der Literatur zu finden sind, basieren meist auf instationären Auströmbedingungen. Der hier verwendete Versuchsaufbau ermöglicht ein stationäres Ausströmen für mehrere Minuten und somit eine direkte Vergleichbarkeit mit den existierenden (stationären) Modellen. Weiterhin ist der Versuchsstand umrüstbar für Vergleichsmessungen mit Kohlenwasserstoffen (Methan etc.) sowie Mischungen aus Wasserstoff und Kohlenwasserstoffen. T2 - Magdeburg-Köthener Brandschutz- und Sicherheitstagung 2024 CY - Magdeburg, Germany DA - 14.03.2024 KW - Wassersoff KW - Freistrahlflamme KW - Wärmestrahlung PY - 2024 AN - OPUS4-59911 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Real scale safety investigations of hydrogen jet flames at high pressure N2 - In order to reduce the human footprint of CO2 emissions and limit global warming effects hydrogen combustion is becoming increasingly important. To enable fuel cells and gas turbines to operates this carbon free fuel, unprecedently large amounts of hydrogen need to be produced and safely transported and stored. The investigation of the effects of accidents involving hydrogen is therefore becoming of outmost importance. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety regulations. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames.[1-4] To verify these models, a H2 Jet Flame project conducted at BAM, is investigating the safety of momentum driven hydrogen jet flames. For this purpose, large-scale tests are carried out at the Test Site Technical Safety (BAM-TTS). The object of the investigations is to assess the effects of real scale release scenarios regarding flame geometry and the thermal radiation emitted. Parameters such as release angle, leakage diameter (currently 1 mm to 10 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In addition, influences such as the type of ignition, ignition location as well as delayed ignition can also be investigated. The gained knowledge will be compared with existing jet flame models, to validate these and identify a possible need for further development. In particular, the focus will be laid on the thermal radiation of hydrogen flames. The challenge here is the visualization and characterization of the flame geometry in an open environment. Visualization is performed using infrared (IR) camera systems from at least two viewing angles. Measurements of the heat radiation of jet flames, which can be found in the literature, are mostly based on unsteady outflow conditions.The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, the tests can be carried out for comparative measurements with hydrocarbons (methane, etc.) as well as mixtures of hydrogen and hydrocarbons. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Gent, Belgium DA - 20.03.2024 KW - Hydrogen KW - Release KW - Jet flame KW - Thermal radiation PY - 2024 AN - OPUS4-59908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Lohrke, Heiko T1 - Robotic Scanning Absorption Spectroscopy for Methane Leak Detection: The Virtual Gas Camera N2 - This paper explores combining a gimbal-mounted tunable diode laser absorption spectroscopy (TDLAS) sensor and a video camera to create a virtual gas camera for methane leak detection. This provides a low-to-zero-cost extension of typical TDLAS gas tomography systems. A prototype setup mounted on a ground robot is evaluated. Results acquired using a simulated methane leak show the feasibility of the virtual gas camera, accurately detecting methane leaks by overlaying concentrations onto a visual image. While the acquisition time is significantly longer than for traditional gas cameras, potential enhancements are discussed. The study concludes that the virtual gas camera is feasible and useful, despite its longer acquisition time. It serves as a valuable software-only addition to typical TDLAS gas tomography systems, offering quickly-available on-site data augmentation for visual leak assessment at low-to-zero cost. T2 - 20th International Symposium on Olfaction and Electronic Nose CY - Grapevine, Texas, USA DA - 12.05.2024 KW - Mobile Robotic Olfaction KW - TDLAS KW - Gas Tomography KW - Gas Camera KW - Plume PY - 2024 AN - OPUS4-60110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kluge, Martin A1 - Habib, Abdel Karim T1 - Unterfeuerung von Flüssigwasserstofftanks N2 - In einer Versuchsreihe im Realmaßstab wurden drei Flüssigwasserstofftanks (LH2) unterfeuert. Hierbei sollte unter anderem geklärt werden, ob es, analog zu druckverflüssigten Gasen, zu einem BLEVE (Boiling Liquid Expanding Vapor Cloud Explosion) kommen kann. Die Experimente wurden auf dem Testareal Wasserstoffsicherheit des Testgeländes Technische Sicherheit der Bundesanstalt für Materialforschung und -prüfung (BAM-TTS) im Rahmen einer Forschungskooperation zwischen der BAM und Gexcon, als Teil des SH2IFT-Programms durchgeführt. Es handelte sich um doppelwandige, vakuumisolierte Tanks von 1 m³ Volumen. Die zylindrischen Tanks unterschieden sich durch ihre Ausrichtung (horizontal oder vertikal) und das verwendete Isoliermaterial (Perlit oder Mehrschichtisolierung (MLI). Der Füllgrad der Tanks betrug bei jedem der durchgeführten Tests etwa 35-40 %. Die Brandlast wurde homogen durch ein propangasbetriebenes Brennersystem erzeugt. Gemessen wurden die Bedingungen im Behälter (Temperaturen und Druck) sowie äußere Randbedingungen und Auswirkungen beim Versagen (Wärmestrahlung, Druckwellen, Flammenballentwicklung und Fragmentierung). Mit Bolometern wurde die Wärmestrahlung gemessen, die sowohl durch das Propanfeuer als auch durch einen möglichen Feuerball/BLEVE erzeugt wurde. Zur Messung der durch das Bersten von Behältern/BLEVEs erzeugten Druckwellen wurden sog. Pencil-Probes verwendet. Des Weiteren wurden mehrere Kameras zur Überwachung der Experimente eingesetzt: Normalbildkameras, Infrarot (IR)-Kameras und Hochgeschwindigkeitskameras, sowohl bodengestützt als auch mittels einer Drohne. Zwei der untersuchten Tanks, ein horizontaler und der vertikale, die beide mit Perlit isoliert waren, hielten der Brandbelastung stand, ohne dass es zu einem Behälterversagen kam. Der mit MLI isolierte horizontale Behälter barst nach 1 Stunde und 6 Minuten und erzeugte dabei einen Feuerball, Trümmerflug und eine Druckwelle. Neben der Beschreibung der Auswirkungen eines kritischen Versagens eines LH2-Tanks sind weitere Ziele der Arbeit die Identifizierung kritischer Behälterzustände sowie die Erstellung eines umfassendes Datensatzes der Trümmer des geborstenen Tanks. Die größten Abstände für kritische Abstände ergaben sich durch Fragmentwurf. Hier sollen 3D-Scans für die Verwendung in CAD und FEM Anwendungen bereitgestellt werden. Umfassende Daten zu den Fragmentwurfweiten, - massen und -positionen wurden bereits publiziert. Damit soll die Voraussetzung geschaffen werden, um vorhandene Wurfweitenmodelle, die bisher nur für einschalige Behälter konzipiert wurden auf ihre Eignung für mehrschalige Behälter zu überprüfen oder mögliche Anpassungen anhand der realen Daten vornehmen zu können. Zudem wurde damit begonnen die nicht geborstenen Tanks zu vermessen und zu zerlegen, um u.a. die Perlit-Schüttung auf Beeinträchtigungen durch den Transport und die Unterfeuerung zu untersuchen. T2 - Magdeburg-Köthener Brandschutz- und Sicherheitstagung 2024 CY - Magdeburg, Germany DA - 14.03.2024 KW - LH2 KW - BLEVE KW - Bersten KW - Tank KW - Unterfeuerung PY - 2024 AN - OPUS4-59715 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habib, Abdel Karim A1 - Kluge, Martin T1 - Untersuchung der Freistzung von Flüssigwasserstoff auf und unter Wasser N2 - In einer Reihe von Experimenten wurden die möglichen Folgen der Freisetzung von verflüssigtem Wasserstoff (LH2) auf, bzw. unter Wasser untersucht. Die Experimente zielten darauf ab, eine unbeabsichtigte Freisetzung von LH2 (z.B. durch Schlauchabriss) insbesondere bei der Betankung eines Schiffes zu simulieren. Für verflüssigtes Erdgas (LNG) wurden dabei sog. RPT’s (rapid phase transition) nachgewiesen, bei denen die spontane Verdampfung relevante Druckwellen erzeugt. Es kann nicht ausgeschlossen werden, dass RPTs auch im Falle von LH2 möglich sind. Die Versuche wurden auf dem Testareal Wasserstoffsicherheit auf dem Testgelände Technische Sicherheit der Bundesanstalt für Materialforschung und -prüfung (BAM-TTS) in Horstwalde, im Rahmen einer Forschungskooperation zwischen der BAM und Gexcon im Rahmen des SH2IFT-Programms durchgeführt. Die LH2-Freisetzungen erfolgten direkt aus einem LH2-Tanklastwagen über eine lange, flexible, vakuumisolierte Transferleitung. Während die Freisetzung oberhalb und unterhalb der Wasseroberfläche jeweils vertikal orientiert war, wurde bei der Unterwasserfreisetzung zusätzlich eine horizontale Ausströmung, parallel zur Wasseroberfläche realisiert. Zur Bestimmung des Massenstromes, wurde ein Wägesystem unter dem Tankwagen eingesetzt. Spezielle Drucksensoren wurden verwendet, um die durch die Freisetzungsvorgänge erzeugten Stoßwellen sowohl im Wasser als auch in der Luft zu messen. Die Gaskonzentrationen über dem Wasserbecken wurden an verschiedenen Positionen gemessen. Hochgeschwindigkeits-, Infrarot- (IR) und normale Kameras wurden eingesetzt, um die Phänomenologie der Freisetzung aufzuzeichnen und das Verhalten der Gaswolke im Zeitverlauf zu verfolgen. Neben den fest installierten Systemen an Land, kamen auch Unterwasserkameras sowie eine Drohne mit Normal- und IR-Kameras zum Einsatz. Zwei Wetterstationen wurden zur Messung von Windgeschwindigkeit, Windrichtung, Temperatur und Luftfeuchtigkeit während aller durchgeführten Tests eingesetzt. Des Weiteren kamen Bolometer zur Wärmestrahlungsmessung zum Einsatz. Zwar führten die Freisetzung zu einer hochturbulenten LH2/Wasser Mischzone, jedoch zu keinen nennenswerten Überdrücken durch RPT. Im Gegensatz dazu wurde unerwartet, aber reproduzierbar, eine Zündung der Gaswolke in freier Luft in einiger Entfernung von den Instrumenten und dem Ort der Freisetzung beobachtet. Die daraus resultierenden Gaswolkenexplosionen führten zu relevanten Überdrücken und zur Wärmeabstrahlung in die Umgebung. T2 - Magdeburg-Köthener Brandschutz- und Sicherheitstagung 2024 CY - Magdeburg, Germany DA - 14.03.2024 KW - LH2 KW - Flüssigwasserstoff KW - Gaswolkenexplosion KW - Freisetzung KW - RPT PY - 2024 AN - OPUS4-59716 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - WP8 - Ensure the quality of testing processes and service offers of the OITB from quality management to training N2 - The MBLabs consortium comprises various organizations that operate testing facilities encompassing a broad spectrum of tests relevant to the construction sector, particularly building envelopes. In the future, additional testing facilities will join the METABUILDING platform to offer their services. These services will be integrated in the MBLabs Open Innovation Test Bed and accessible via the METABUILDING platform. The METABUILDING platform is operated by the METABUILDING association. In Task 8.5 the Quality Assurance system of the MBLabs OITB is developed. The presentation gives an overview regarding the development of this system after 3 years of project execution. T2 - Metabuilding Labs Review Meeting CY - Valladolid, Spain DA - 21.03.2024 KW - Quality assurance KW - Open innovation test bed PY - 2024 AN - OPUS4-59788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burkert, Andreas A1 - Lehmann, Jens A1 - Lehmann, Jens T1 - Korrosionsarten bei nichtrostenden Stählen N2 - Übersichtsvortrag zu Korrosionsarten, die bei nichtrostenden Stählen unter verschiedenen Einsatzbedingungen auftreten können. Die Grundlagen zur Pasivität und der örtlichen Störung der Passivität werden im Zusammenspiel komplexer Einflussfaktoren des Korrosionssystems herausgestellt. Die erarbeiteten theoretischen Grundlagen werden anhand praktischer Beispiel für alle relevanten Korrosionsarten vertieft. T2 - VDEh Seminar "Korrosionsverhalten nichtrostender Stähle in wässrigen Medien und bei atmosphärischer Beanspruchung* CY - Düsseldorf, Germany DA - 30.01.2024 KW - nichtrostender Stahl KW - Korrosionsverhalten KW - Passivität PY - 2024 AN - OPUS4-59549 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Thermal Radiation Investigations of Real-Scale Hydrogen Jet Flames at High Pressure N2 - In order to reduce global warming, the use of hydrogen as a renewable energy source is becoming more important. To enable this transition, unprecedently large amounts of hydrogen need to be safely transported and stored. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety distances. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames. To verify the applicability of these models to hydrogen, real-scale tests are carried out at the BAM Test Site for Technical Safety (BAM-TTS) with the aim to assess the flame geometry and the emitted thermal radiation. Parameters such as leakage diameter (currently up to 30 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In particular, the focus will be laid on the measurement and modelling of the thermal radiation. The challenge here is the characterization of the flame geometry in an open environment and its impact on the thermal radiation. Existing heat radiation data from literature are mostly based on unsteady outflow conditions. The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, stationary outflow tests with hydrocarbons (methane) were also carried out, which are intended to serve as reference tests for checking flame models based on hydrocarbon data. Following from the experimental investigations, modelling parameters such as the Surface Emissive Power (SEP) and the radiant heat fraction for hydrogen and methane will be compared to literature data. T2 - Center for Hydrogen Safety Americas Conference, American Institute of Chemical Engineers CY - Las Vegas, NV, USA DA - 21.05.2024 KW - Thermal radiation KW - Hydrogen KW - Release KW - Jet flame PY - 2024 AN - OPUS4-60195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -