TY - CHAP A1 - Pittner, Andreas A1 - Schürmann, Karsten ED - Böhmer, Heike ED - Brinkmann-Wicke, Tanja ED - Sell, Sabine ED - Simon, Janet ED - Tebben, Cornelia T1 - Automatisierte Rohrknotenfertigung in der Offshore-Windenergie – Potenzial zum Leichtbau im schweren Stahlbau N2 - Um den Klimawandel wirksam zu bekämpfen, ist es entscheidend, fossile Brennstoffe durch erneuerbare Energiequellen wie Wind-, Solar- und Wasserkraft sowie alternative Energieträger, beispielsweise grünen Wasserstoff, zu ersetzen. Offshore-Windenergie spielt hierbei eine zentrale Rolle, da sie dank der Kombination aus globaler Verfügbarkeit, relativ geringen Betriebskosten und fortgeschrittenem technischen Entwicklungsstand besonders geeignet ist, zur regenerativen Stromerzeugung beizutragen. Sie ist zudem ein Schlüsselelement für die Umsetzung des Europäischen Green Deals, der das Ziel verfolgt, bis 2050 Klimaneutralität in der EU zu erreichen. Expertenschätzungen zufolge ist eine Steigerung der aktuellen Kapazität von 25 GW im Jahr 2020 auf etwa 450 GW notwendig, um diese ambitionierten Ziele zu erfüllen. Bei der Entwicklung zukünftiger Offshore-Windparks, insbesondere in tieferen Gewässern, gewinnen Jacket-Gründungsstrukturen an Bedeutung. Diese Strukturen, die eine höhere Steifigkeit bei geringerem Materialeinsatz im Vergleich zu den bisher vorherrschenden Monopile-Gründungen bieten, basieren auf komplexen, räumlich aufgelösten Konstruktionen, die ähnlich den Öl- und Gasplattformen entwickelt werden. Die Herstellung der Jacketknoten, die bislang überwiegend manuell geschweißt wurden, birgt erhebliches Optimierungspotential. Durch Automatisierung und Digitalisierung der Fertigungsprozesse könnten nicht nur die Effizienz gesteigert, sondern auch die Qualität der Endprodukte durch präzise Überwachung und Kontrolle der Produktionsparameter verbessert werden. Diese technologischen Fortschritte sind für die Skalierung der Offshore-Windenergie und die Erreichung der Klimaziele von entscheidender Bedeutung. KW - Automatisierte Fertigung KW - Offshore Windenergie KW - Jacket-Gründungsstrukturen KW - Aufgelöste Tragstrukturen KW - Leichtbau PY - 2022 SN - 978-3-7388-0719-6 SP - 260 EP - 266 PB - Fraunhofer IRB Verlag CY - Stuttgart AN - OPUS4-59502 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Auswirkungen von Titan und Niob auf das metallurgische Schweißverhalten von hochfesten Feinkornbaustählen und deren mechanischen Eigenschaften N2 - Mikrolegierungselemente wie Nb und Ti sind entscheidend für die erwünschte mechanische Festigkeit von vergüteten Feinkornbaustählen mit einer Nennstreckgrenze von ≥ 690 MPa. Aktuelle Spezifikationen geben lediglich Obergrenzen für die chemische Zusammensetzung vor, allerdings können geringfügige Abweichungen erhebliche Auswirkungen auf die mechanischen Eigenschaften haben. Die Vorhersage der Schweißbarkeit und Integrität von Schweißverbindungen stellt aufgrund der variierenden Zusammensetzung und Mikrostrukturen Herausforderungen dar. Unerwünschte Effekte wie Erweichung der Wärmeeinflusszone (WEZ) oder Verfestigung können auftreten. Um dies zu untersuchen, wurden verschiedene Mikrolegierungsrouten mit variierenden Ti- und Nb-Gehalten an Laborschmelzen erforscht. Die Basis jeder Route entsprach der üblichen S690QL in Zusammensetzung und Wärmebehandlung. Dreilagenschweißungen wurden mittels Metallaktivgasschweißens (MAG) durchgeführt, um kritische Gefügebereiche zu identifizieren. Die Analyse konzentrierte sich auf Phasenumwandlungen während der Abkühlung und metallurgisches Ausscheidungsverhalten. Die mechanischen Eigenschaften der Schweißnähte wurden durch Zugversuche ermittelt. Die Ergebnisse zeigen einen bedeutenden Einfluss der Mikrolegierungsroute und Schweißwärmezufuhr auf die Ausscheidungskinetik, trotz insgesamt guter Schweißbarkeit der Werkstoffe. T2 - Bacheloranden-, Masteranden-, Doktoranden Kolloquium CY - Magdeburg, Germany DA - 17.01.2024 KW - WEZ-Erweichung KW - Hochfester Feinkornbaustahl KW - Digital Image Correlation KW - Querzugversuch KW - Mikrolegierungseinfluss PY - 2024 AN - OPUS4-59420 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl N2 - Der Vortrag gibt einen Überblick über den Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 17.01.2024 KW - Hochfester Stahl KW - Additive Fertigung KW - Reparaturschweißen KW - Eigenspannungen PY - 2024 AN - OPUS4-59413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593515 DO - https://doi.org/10.3390/met14010082 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönsee, Eric A1 - Hüsken, Götz A1 - Jeyifous, Olubunmi Anthony A1 - Mezhov, Alexander A1 - Strangfeld, Christoph T1 - Calculating rheological properties of fresh mortar for additive manufacturing based on experimental, multi-sensor data N2 - Additive manufacturing of concrete structures is a novel and emerging technology. Freecontouring in civil engineering, which allows for entirely new designs, is a significant advantage. Inthe future, lower construction costs are expected with increased construction speeds and decreasingrequired materials and workers. However, architects and civil engineers rely on a certain quality ofexecution to fulfil construction standards. Although several techniques and approaches demonstratethe advantages, quality control during printing is highly challenging and rarely applied. Due to thecontinuous mixing process commonly used in 3D concrete printing, it is impossible to exclude varia-tions in the dry mixture or water content, and a test sample cannot be taken as a representative samplefor the whole structure. Although mortar properties vary only locally, a defect in one layer duringprinting could affect the entire integrity of the whole structure . Therefore, real-time process monitor-ing is required to record and document the printing process.At the Bundesanstalt für Materialforschung und -prüfung (BAM) a new test rig for the additive man-ufacturing of concrete is built. The primary purpose is measuring and monitoring the properties of amortar during the printing process.The following study investigates an approach for calculating yield stress and plastic viscosity based onexperimentally recorded pressure data. The calculations assume that fresh mortar behaves as a Bing-ham fluid and that the Buckingham-Reiner-equation is applicable. A test setup consisting of rigid pipeswith integrated pressure sensors at different positions is utilized.Monitoring the printing process with different sensors is crucial for the quality control of an ongoingprocess. T2 - Non-Traditional Cement and Concrete 2023 Conference CY - Brno, Czech Republic DA - 25.06.2023 KW - 3DCP KW - Monitoring KW - Additive manufacturing KW - Rheology KW - Bingham fluid KW - Concrete printing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598179 DO - https://doi.org/10.4028/p-EV4gPv SN - 1662-0356 VL - 145 SP - 131 EP - 139 PB - Trans Tech Publications CY - Baech AN - OPUS4-59817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Brauser, Stephan A1 - Fabry, Çağtay A1 - Rethmeier, Michael T1 - Herausforderungen und Lösungen für das robotergestützte Schweissen von Stahlrohrknoten für Offshore Wind Jackets N2 - Die Offshore-Windenergie spielt eine wichtige Rolle beim angestrebten Übergang zu einer emissionsfreien Industrie während der nächsten Jahrzehnte. Allerdings beeinflusst die Gründung der Offshore-Windanlagen den gesamten Installationsprozess. Die Anwendung von Leichtbauprinzipien im Stahlbau, wie beispielsweise die Verwendung von aufgelösten Tragstrukturen, sogenannten Jacket-Fundamenten, bietet ein großes Potenzial zur Reduzierung des Ressourcenverbrauchs, insbesondere im Hinblick auf die benötigte Stahlmenge. Der Vortrag befasst sich daher mit der vollständigen Digitalisierung der schweißtechnischen Fertigungs- und Prüfkette. Ziel ist es, eine vollautomatische Fertigung sowie Qualitätsprüfung von Rohrknoten zu ermöglichen. Diese stellen ein Schlüsselelement von Jacket-Fundamenten dar. Des Weiteren wird der Zusammenhang zwischen der Geometrie der Schweißnaht und der resultierenden Ermüdungsfestigkeit durch numerische Methoden unter Einbeziehung bionischer Prinzipien bewertet. Es wird gezeigt, dass rohrförmige Knoten unter Berücksichtigung von Geometrietoleranzen vollautomatisch geschweißt werden können. Die Schweißnahtform konnte gemäß den numerischen Modellen hergestellt werden, was ein großes Potenzial für eine verlängerte Lebensdauer bietet. Anschließend erfolgt eine Bewertung der Verbesserungen bei der Ressourceneffizienz und der Verringerung des CO2-Fußabdrucks durch ein Life Cycle Assessment. T2 - Schweissen in der maritimen Technik und im Ingenieurbau CY - Hamburg, Germany DA - 24.05.2023 KW - Offshore Windenergie KW - Fertigung KW - Leichtbau KW - Aufgelöste Tragstrukturen KW - Schweißen KW - Ermüdungsfestigkeit PY - 2023 AN - OPUS4-59498 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - A systematic investigation of the transfer of polyphosphate/inorganic silicate flame retardants from epoxy resins to layered glass fiber-reinforced composites and their post-furnace flexural properties N2 - The systematic transfer of solvent-free, additive flame retardant (FR) formulations from epoxy resins to glass fiber-reinforced epoxy composites (GFRECs) through prepregs is difficult. Additionally, obtaining data on their post-fire mechanics is often challenging. Utilizing melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane-coated ammonium polyphosphate (SiAPP) FRs with low-melting inorganic silicates (InSi) in an 8:2 proportion and 10% loading by weight in a diglycidyl ether of bisphenol A (DGEBA) resin, a systematic investigation of the processing properties, room-temperature mechanics, and temperature-based mechanics of the systems was performed. The resin was cured with a dicyandiamide hardener (DICY) and a urone accelerator. The results revealed no substantial impact of these FRs at the current loading on the resin's glass transition temperature or processability. However, the fire residues from cone calorimetry tests of the composites containing FRs were found to be only 15-20% of the thickness of the resins, implying a suppression of intumescence upon transfer. At room temperature, the decrease in the flexural modulus for the composites containing FRs was negligible. Exposure of the composites in a furnace at 400°C as a preliminary study before ignition tests was shown to cause significant flexural moduli reductions after 2.5 min of exposure and complete delamination after 3 min making further testing unviable. This study emphasizes the need for future research on recovering modes of action upon transfer of FR formulations from resins to composites. Based on the challenges outlined in this investigation, sample adaptation methods for post-fire analysis will be developed in a future study. KW - DGEBA KW - Prepregs KW - Glass fiber-reinforced composites KW - Post-fire testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605239 DO - https://doi.org/10.1002/pc.28416 SN - 1548-0569 SN - 0272-8397 VL - 45 IS - 10 SP - 9389 EP - 9406 PB - Wiley AN - OPUS4-60523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tabaka, Weronika A1 - Meinel, Dietmar A1 - Schartel, Bernhard T1 - Sacrifice Few to Save Many: Fire Protective Interlayers in Carbon- Fiber-Reinforced Laminates N2 - The fire protection of carbon-fiber-reinforced polymer (CFRP) laminates often relies on flame-retardant coatings, but in some applications, their efficacy may diminish upon direct fire exposure due to rapid pyrolysis. This study introduces an innovative approach by integrating protective interlayers within the laminate structure to enhance the fire resistance. Various materials, including ceramic composite WHIPOX, titanium foil, poly(etherimide) (PEI) foil, basalt fibers, rubber mat, and hemp fibers, were selected as protective interlayers. These interlayers were strategically placed within the laminate layout to form a sacrificial barrier, safeguarding the integrity of the composite. Bench-scale fire resistance tests were conducted, where fire (180 kW/m2) was applied directly to the one side of the specimen by a burner while a compressive load was applied at the same time. Results indicate significant prolongation of time to failure for CFRP laminates with protective interlayers, which is up to 10 times longer. This innovative approach represents a potential advance in fire protection strategies for CFRP laminates, offering improved resilience against fire-induced structural failure. KW - Composites in fire KW - Fire resistance KW - Fire retardant interlayers KW - Laminate design KW - Carbon fibre reinforced PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601943 DO - https://doi.org/10.1021/acsomega.4c01408 SN - 2470-1343 VL - 9 IS - 22 SP - 23703 EP - 23712 PB - ACS AN - OPUS4-60194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Salari, Farid A1 - Zocca, Andrea A1 - Bosetti, Paolo A1 - Hlaváček, Petr A1 - Italiano, Antonino A1 - Gobbin, Filippo A1 - Colombo, Paolo A1 - Kühne, Hans-Carsten A1 - Sglavo, Vincenzo M. T1 - Powder-bed 3D printing by selective activation of magnesium phosphate cement: Determining significant processing parameters and their effect on mechanical strength N2 - The present work addresses powder bed binder jetting additive manufacturing by selective magnesium phosphate cement activation. Despite the potential of this technology to aid the digitalization of the construction industry, the effect of processing parameters on the mechanical performance of printed materials has not yet been studied to generate a guideline for the further development of the technology. Statistical methodologies were used to screen the effect of four printing process parameters (printing speed, layer thickness, raster angle, and build direction on flexural and compressive strength). As the exploited technology works with constant fluid pressure, the physical interpretation of the effect of each factor can be considered taking into account the interactions between the binder materials in the powder bed. Analysis of variance (ANOVA) indicated that printing speed and layer thickness significantly affect mechanical performances. Furthermore, the layout of samples for the printing process is preferable to be parallel the printhead movement. An anisotropic behavior was observed, and the samples subjected to compressive forces parallel to the layer plane possessed lower strength values. This effect can be interpreted as a result of a weak area of low density in between layers, leading to a pronounced delamination under compression. Even though the strength of the printed material is not suitable for a structural concrete, it can be marginally improved by design of experiment and optimized for non-structural applications, such as for porous artificial stone. Design of experiment coupled with ANOVA methods can be used in the future to support the development of novel material mixtures, thus expanding the fields of application of this novel additive manufacturing technology. KW - Concrete 3D-printing KW - Particle-bed binder jetting KW - Design of experiment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601654 DO - https://doi.org/10.1016/j.oceram.2024.100609 VL - 18 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-60165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Automatisierte aktive thermografische Prüfung N2 - Aktive thermografische Prüfung ist ein vielseitiges Instrument in der Familie der zerstörungsfreien Prüfverfahren. Der Einzug moderner Lasertechnologie hat hier bedeutende neue Anwendungsfelder eröffnet. In Kombination mit Industrierobotik können nun beispielsweise beliebig komplex geformte Bauteile großflächig vollautomatisiert auf Oberflächenrisse überprüft werden. Der hier vorliegende Vortrag gibt einen Überblick über die Grundlagen der Laserthermografie, zeigt unsere Anstrengungen am Fachbereich im Bereich der automatisierten thermografischen Detektion von Oberflächenrissen und gibt ein Ausblick über neue moderne Thermografieverfahren aus der Forschung. T2 - VATH Frühjahrssymposium CY - Lingen, Germany DA - 26.04.2024 KW - Thermografie KW - Laser KW - ZfP PY - 2024 AN - OPUS4-59965 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barretto, T. A1 - Gentes, S. A1 - Braun, J. A1 - Averin, Anton A1 - Lecompagnon, Julien A1 - Stroncik, N. T1 - Automated non-destructive internal corrosion detection on radioactive drums (ZIKA) N2 - The aim of the ZIKA research project, funded by the BMBF funding program FORKA (FKZ:15S9446 A-C), is the automated detection of internal corrosion of radioactive drums using non-destructive testing (NDT). The newly gained findings will be combined with research results from the previous project EMOS (FKZ:15S9420), which dealt with the external damage of drums. Using NDT, internal corrosion and possible internal sources of damage can be identified before they become a safety-relevant issue. However, if internally sourced damages can be seen externally, the integrity of the damaged drum is no longer guaranteed, which has significant consequences. Therefore, early detection before integrity failure is of particular importance for interim storage facilities with low- and medium-level radioactive waste drums. T2 - Kerntechnik 2024 CY - Leipzig, Germany DA - 11.06.2024 KW - Corrosion detection KW - Non-destructive testing KW - Automated inspection system PY - 2024 SP - 1 EP - 5 AN - OPUS4-60322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Lasers: A versatile Heat Source for Modern Active Thermographic Testing N2 - The properties of laser radiation result in a wide range of applications, making laser technologies indispensable in areas such as industry, science and medicine. The possible areas of application for thermography in this context are just as diverse. Thermography is used in laser applications when permanent monitoring and control of thermal development is necessary. Among others, this is the case in additive manufacturing, laser-based measuring devices and non-destructive testing. Furthermore, thermography is ideally suited as a testing method when it comes to ensuring the quality of the laser itself. In this talk it is outlined, how lasers can be used as a heat source in active thermographic testing. Furthermore, two special variants (spatial & temporal structured heating) are described, for which lasers are highly suitable. T2 - Webinar: Laser Technologies Benefiting from Infrared Thermography CY - Online meeting DA - 24.04.2024 KW - Thermography KW - Laser KW - NDT PY - 2024 UR - https://www.infratec.eu/press/press-releases/details/2024-03-04-laser-technologies-benefiting-from-infrared-thermography/ AN - OPUS4-59934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Nondestructive defect characterization using full-frame spatially structured super resolution laser thermography N2 - Die laserbasierte aktive thermografische Prüfung als berührungslose Methode der zerstörungsfreien Werkstoffprüfung (NDT) basiert auf der aktiven Erwärmung des Testobjekts (OuT) und Messung des resultierenden Temperaturanstiegs mit einer Infrarotkamera. Dadurch bedingt können systematische Abweichungen vom vorhergesagten Erwärmungsverhalten Aufschluss über dessen innere Struktur geben. Jedoch ist das Auflösungsvermögen für innenliegende Defekte durch die diffusive Natur der Wärmeleitung in Festkörpern begrenzt. Thermografische Super-Resolution (SR)-Methoden zielen darauf ab, diese Limitation durch die Kombination mehrerer Messungen mit jeweils unterschiedlicher strukturierter Erwärmung und mathematischer Optimierungsmethoden zu überwinden. Zur Rekonstruktion innerer Defekte mithilfe thermografischer SR-Rekonstruktionsmethodik wird für die Gesamtheit mehrerer Messungen ein schlecht gestelltes und stark regularisiertes inverses mathematisches Problem gelöst, was in einer dünnbesetzten Karte der internen Defektstruktur des OuTs resultiert. Der vorliegende Vortrag gibt einen Überblick über die geleisteten Arbeiten in diesem Gebiet im Rahmen der hier mit dem Wissenschaftspreis der DGZfP 2024 prämierten Arbeit. T2 - Jahrestagung der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Thermografie KW - Laser KW - ZfP KW - Super-Resolution KW - DLP KW - DMD PY - 2024 AN - OPUS4-60007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp A1 - Ahmadi, Samim A1 - Pech-May, Nelson W. A1 - Hauffen, Jan Christian A1 - Thiel, Erik A1 - Ziegler, Mathias T1 - New options for finding defects on and below the surface using structured laser thermography N2 - In infrared thermography, the interaction of the heat flow with the internal geometry or inhomogeneities in a sample and their effect on the transient temperature distribution is used, e.g., to detect defects non-destructively. An equivalent way of describing this is the propagation of thermal waves inside the sample. Although thermography is suitable for a wide range of inhomogeneities and materials, the fundamental limitation is the diffuse nature of thermal waves and the need to measure their effect radiometrically at the sample surface only. The crucial difference between diffuse thermal waves and propagating waves, as they occur, e.g., in ultrasound, is the rapid degradation of spatial resolution with increasing defect depth. This degradation usually limits the applicability of thermography for finding small defects on and below the surface. A promising approach to improve the spatial resolution and thus the detection sensitivity and reconstruction quality of the thermographic technique lies in the shaping of these diffuse thermal wave fields using structured laser thermography. Some examples are: • Narrow crack-like defects below the surface can be detected with high sensitivity by superimposing several interfering thermal wave fields, • Defects very close to each other can be separated by multiple measurements with varying heating structures, • Defects at different depths can be distinguished by an optimized temporal shaping of the thermal excitation function, • Narrow cracks on the surface can be found by robotic scanning with focused laser spots. We present the latest results of this technology obtained with high-power laser systems and modern numerical methods. T2 - 20th World Conference on Non-Destructive Testing (WCNDT) CY - Incheon, Korea DA - 27.05.2024 KW - Thermography KW - Laser KW - NDT KW - Super-Resolution KW - DLP KW - DMD PY - 2024 AN - OPUS4-60172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yagdjian, H. A1 - Lecompagnon, Julien A1 - Hirsch, Philipp A1 - Ziegler, Mathias A1 - Gurka, M. T1 - Application of the Thermal Shock Response Spectrum (TSRS) methodology to various forms of heat sources by impulse thermography N2 - In this paper, we investigate the influence of different heat source pulse shapes by Infrared impulse thermography (IRT) on the results of the thermal shock response spectrum (TSRS) methodology. TSRS is a new alternative approach for evaluating impulse thermography (IRT) data based on an analogy to Shock Response Spectrum (SRS) analysis (ISO 18431) for mechanical systems. It allows processing the entire recorded signal without truncating the saturated thermogram, as in pulse-phase thermography (PPT) or thermal signal reconstruction (TSR). For this purpose, we use a widespread halogen lamp as heat source as well as laser spot. The laser source enables not only to generate a precise shape of the pulse, but also to heat a specific area of the sample uniformly. This makes it possible to suppress influences of lateral fluxes due to uneven distribution of the excitation source on the surface of the specimen and leads to improved results. In order to quantitatively compare the results and to investigate the possible influence of the source shape on the TSRS, the Tanimoto criterion and the signal-to-noise ratio (SNR) were applied to the region of interest (ROI) of the carbon fiber reinforced polymer (CFRP) laminate with artificial defects as defect detectability criterion. T2 - Jahrestaung der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Thermal shock response KW - Laser KW - ZfP KW - Post-processing KW - Thermografie PY - 2024 AN - OPUS4-60158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - New methods of thermographic super resolution with structured laser heating N2 - Thermographic NDT is based on the interaction of thermal waves with inhomogeneities. The propagation of thermal waves from the heat source to the inhomogeneity and to the detection surface according to the thermal diffusion equation leads to the fact that two closely spaced defects can be incorrectly detected as one defect in the measured thermogram. In order to break this spatial resolution limit (super resolution), the combination of spatially structured heating and numerical methods of compressed sensing can be used. The improvement of the spatial resolution for defect detection then depends in the classical sense directly on the number of measurements. Current practical implementations of this super resolution detection still suffer from long measurement times, since not only the achievable resolution depends on performing multiple measurements, but due to the use of single spot laser sources or laser arrays with low pixel count, also the scanning process itself is quite slow. With the application of most recent high-power digital micromirror device (DMD) based laser projector technology this issue can now be overcome. Our studies deal with the application of fully 2D-structured DMD-based excitation and subsequent super-resolution-based defect reconstruction. We analyze the influence of different testing parameters, like the number of measurements or the white content of the excitation pattern. Furthermore, we have dealt with the choice of parameters in the reconstruction that have an influence on the underlying minimization problem in terms of compressed sensing. Finally, the results of the super resolution reconstruction are compared with the results based on conventional thermographic testing methods. T2 - 20th World Conference on Non-Destructive Testing (WCNDT) CY - Incheon, Korea DA - 27.05.2024 KW - Thermography KW - Laser KW - NDT KW - Super-Resolution KW - DLP KW - DMD PY - 2024 AN - OPUS4-60171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Yagdjian, H. A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Gurka, M. T1 - Optimization of thermal shock response spectrum as infrared thermography post-processing methodology using Latin hypercube sampling and analytical thermal N-layer model N2 - In this work, we continue to develop and investigate the Thermal Shock Response Spectrum (TSRS) method as an alternative data processing method for infrared thermography (IRT). We focus on improving the current TSRS algorithm and present an optimization methodology for finding the optimal thermal Q-factor and characteristic frequency pair, which is based on the widely applied random sampling method. We show the qualitative relationship between the determined optimal characteristic frequency and the corresponding maximum difference in diffusion length between reference and defective models, as calculated by selecting a specific one-dimensional thermal N-layer model. The investigations were performed on an inhomogeneous plate made of carbon fiber reinforced polymer (CFRP) with artificial square defects at different depths. Furthermore, two different heat sources were used: a xenon flash lamp and a laser. These sources are not only distinct by their underlying physics but also generate inherently different pulse shapes. To quantitatively estimate the contrast between defect and non-defect areas, and to compare these results with commonly used infrared thermography (IRT) data post-processing methods such as Pulse Phase Thermography (PPT) and Thermographic Signal Reconstruction (TSR), the Tanimoto criterion (TC) and signal-tonoise ratio (SNR) were used. KW - Infrared thermography KW - Composite materials KW - TSRS optimization KW - Defect identification KW - Heat source shape KW - N-layers model KW - Latin hypercube sampling PY - 2024 UR - https://ssrn.com/abstract=4910240 SP - 1 EP - 21 PB - Elsevier CY - New York, NY AN - OPUS4-60734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Wernicke, Pascal A1 - Hufschläger, D. T1 - Pulse compression for air-coupled ferroelectret and thermoacoustic transducers N2 - The main advantage of air-coupled ultrasonic testing is the absence of a liquid couplant, which can damage some materials. However, most air-coupled testing scenarios have the challenge of low signals and a signal-to-noise ratio (SNR) several orders of magnitude lower than with couplant-assisted tech-niques. Since this challenge of small SNR also exists in radar technology, the pulse compression used there was adapted and applied to the physical conditions of air-coupled ultrasonic testing. This paper presents ultrasonic transmission measurements on a carbon-fibre-reinforced polymer plate using two experimental setups: 1) a thermoacoustic transmitter and an optical microphone and 2) a pair of ferroe-lectret transducers as transmitter and receiver. Thermoacoustic transmitters convert electrical energy to heat, which causes the air to expand thus producing acoustic waves. The optical microphone is based on a Fabry-Perot interferometer. Ferroelectrets are charged cellular polymers, having piezoelectric proper-ties and excellent acoustic matching to air. Both thermoacoustic transmitters and ferroelectrets are non-linear regarding the relationship between the excited sound pressure and the excitation voltage. Due to these physical boundary conditions, unipolar coding was used to modulate the excitation signals. Vari-ous codes were tested, and parameters of the excitation pulses were varied to find the optimal combina-tion for each experimental setup. The application of pulse compression to the combination of thermo-acoustic transmitter and optical microphone increased the signal-to-noise ratio by up to 16 dB and for the ferroelectret transducers by up to 23 dB. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, The Netherlands DA - 08.07.2024 KW - Pulse compression KW - Air-coupled ultrasonic transducers KW - Ferroelectret KW - Thermoacoustics PY - 2024 SP - 1 EP - 7 AN - OPUS4-60725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hirsch, Philipp Daniel A1 - Kunji Purayil, Sruthi Krishna A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Ziegler, Mathias T1 - Robotergestützte 3D-Scans und Laserthermografie zur Prüfung an komplexen Bauteilen auf Risse N2 - Die Integration von Automation und Robotik in die Prüfprozesse ermöglicht die Untersuchung komplexer Bauteile. Diese Studie präsentiert die robotergestützte Laserthermografie, um Risse in solchen Bauteilen zu identifizieren und analysieren. Diese Technik ermöglicht die automatisierte Rissprüfung welche im Vergleich zur Farbeindringprüfung auf viele, meist manuelle, Arbeitsschritte sowie die notwendigen Chemikalien verzichtet. Zusätzlich wird ein automatisiertes Einscannen der Bauteile mithilfe eines Linienscanners vorgestellt. Dieser Schritt ermöglicht eine detaillierte 3D-Rekonstruktion der Bauteilgeometrie und ermöglicht eine einfache Korrektur von Abweichungen in der Bauteilaufnahme und eröffnet Möglichkeiten zur adaptiven Bahnplanung bei Bauteilverformungen. Die Rückprojektion der gefundenen Risse auf die Oberfläche des Bauteils kann automatisiert erfolgen. Dieser Schritt erlaubt nicht nur die Identifikation der Risse, sondern auch eine genauere Analyse ihrer Geometrie und Lage am Bauteil. Die Kombination von robotergestützter Laserthermografie, automatisiertem 3DScanning und Rückprojektion der Risse auf die Bauteiloberfläche eröffnet neue Möglichkeiten in der zerstörungsfreien Prüfung von komplexen Bauteilen und erweitert damit mögliche Anwendungsfelder. T2 - Jahrestagung der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - ZFP4.0 KW - Automatisierung KW - Thermografie KW - Laser KW - Roboter PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604811 UR - https://www.ndt.net/?id=29520 VL - 182 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-60481 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ricci, M. A1 - Laureti, S. A1 - Ziegler, Mathias T1 - Practical study on the thermographic detectability of internal defects using temporally structured laser heating N2 - Modern laser systems have proven to be versatile heat sources for active thermographic testing applications. Compared to more traditional light sources, e.g. flash or halogen lamps, their output power can be easily modulated at high rates, allowing a wide variety of complex excitations to be realized. Although their total optical output power can be theoretically scaled to arbitrary values, the maximum output power is practically limited by many factors: the maximum power that the sample under test can absorb without altering the lighted surface itself, the trade-off between power density and inspected area, the cost of the laser system, etc. Furthermore, when working with spatial modulator systems, the output power could be limited to avoid provoking any damages on such devices. Nevertheless, to guarantee sufficient heating even for highly thermally conductive materials and/or deeply buried defects, the heating times can be extended, e.g., either by using step heating, long pulse thermography, or by lock-in thermography with a continuously modulated heating. However, for all these approaches, the ranging capabilities of the thermographic defect detection are reduced due to the limited frequency content of the excitation. To tackle this problem, i.e. to increase the excitation energy while preserving its frequency content, new approaches have been developed in the last two decades, among which the use of coded excitations combined with pulse-compression, and the use of multiple lock-in analysis or of a frequency modulated excitation signal. The challenges of such temporally structured heating techniques are manifold, for example, the DC component inherent in optical heating must be taken into account. In general, a wider frequency bandwidth or greater variability of the frequency components also means greater complexity for signal generation and data processing. In this paper, temporal structured excitation schemes with different degrees of complexity are compared on a high power laser system. T2 - 17th Quantitative InfraRed Thermography Conference (QIRT) CY - Zagreb, Croatia DA - 01.07.2024 KW - Thermography KW - Laser KW - NDT KW - Temporal structuring KW - Pulse-compression PY - 2024 AN - OPUS4-60563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunji Purayil, Sruthi Krishna A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel T1 - Anisotropy investigation of a single crystal superalloy using laser-spot infrared thermography N2 - Thermal property investigation of anisotropic materials such as single crystal superalloys are still in interest of practical and fundamental reasons but remains challenging using conventional testing methods. In this study, a single crystal superalloy is tested using laser-spot thermography, and its thermal anisotropy is investigated. Determining anisotropic thermal conductivity at microscopic scales is challenging, as it appears isotropic at the macroscopic scale. Infrared thermography is one of the best-known techniques for measuring material heat transfer properties and facilitating visualization of temperature distribution through the specimen. The proposed study uses the active thermography method of laser-spot infrared thermography, in which a laser spot is focused onto the sample surface and the thermal response is captured from the surface of the specimen with an infrared camera. A detailed analysis of temperature gradients and heat diffusion patterns aids in the measurement of thermal conductivity values along the sample's different crystallographic directions. The directional bonding characteristics and inherent crystallographic structure of the alloy account for the in-plane thermal conductivities calculated from experimental thermal measurements. The laser-spot thermography method has proven to be an effective tool for mapping the material's thermal conductivity anisotropy with high sensitivity and high spatial and temporal resolution. The investigation into the anisotropy of the material provides an insight into heat flow in the structure and helps in optimizing the design and overall performance of the material system. T2 - 17th Quantitative InfraRed Thermography Conference (QIRT) CY - Zagreb, Croatia DA - 01.07.2024 KW - Infrared Thermography KW - NDT KW - Laser KW - Single crystal superalloy KW - Anisotropy PY - 2024 AN - OPUS4-60663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Wernicke, Pascal A1 - Hufschläger, Daniel T1 - Pulse compression for air-coupled ferroelectret and thermoacoustic transducers N2 - The main advantage of air-coupled ultrasonic testing is the absence of a liquid couplant, which can damage some materials. However, most air-coupled testing scenarios have the challenge of low signals and a signal-to-noise ratio (SNR) several orders of magnitude lower than with couplant-assisted techniques. Since this challenge of small SNR also exists in radar technology, the pulse compression used there was adapted and applied to the physical conditions of air-coupled ultrasonic testing. This paper presents ultrasonic transmission measurements on a carbon-fibre-reinforced polymer plate using two experimental setups: 1) a thermoacoustic transmitter and an optical microphone and 2) a pair of ferroelectret transducers as transmitter and receiver. Thermoacoustic transmitters convert electrical energy to heat, which causes the air to expand thus producing acoustic waves. The optical microphone is based on a Fabry-Perot interferometer. Ferroelectrets are charged cellular polymers, having piezoelectric properties and excellent acoustic matching to air. Both thermoacoustic transmitters and ferroelectrets are non-linear regarding the relationship between the excited sound pressure and the excitation voltage. Due to these physical boundary conditions, unipolar coding was used to modulate the excitation signals. Various codes were tested, and parameters of the excitation pulses were varied to find the optimal combination for each experimental setup. The application of pulse compression to the combination of thermoacoustic transmitter and optical microphone increased the signal-to-noise ratio by up to 16 dB and for the ferroelectret transducers by up to 23 dB. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Pulse compression KW - Air-coupled ultrasonic transducers KW - Ferroelectret KW - Thermoacoustics PY - 2024 AN - OPUS4-60733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -