TY - THES A1 - Laquai, René T1 - Extending synchrotron X-ray refraction imaging techniques to the quantitative analysis of metallic materials N2 - In this work, two X-ray refraction based imaging methods, namely, synchrotron X-ray refraction radiography (SXRR) and synchrotron X-ray refraction computed tomography (SXRCT), are applied to analyze quantitatively cracks and porosity in metallic materials. SXRR and SXRCT make use of the refraction of X-rays at inner surfaces of the material, e.g., the surfaces of cracks and pores, for image contrast. Both methods are, therefore, sensitive to smaller defects than their absorption based counterparts X-ray radiography and computed tomography. They can detect defects of nanometric size. So far the methods have been applied to the analysis of ceramic materials and fiber reinforced plastics. The analysis of metallic materials requires higher photon energies to achieve sufficient X-ray transmission due to their higher density. This causes smaller refraction angles and, thus, lower image contrast because the refraction index depends on the photon energy. Here, for the first time, a conclusive study is presented exploring the possibility to apply SXRR and SXRCT to metallic materials. It is shown that both methods can be optimized to overcome the reduced contrast due to smaller refraction angles. Hence, the only remaining limitation is the achievable X-ray Transmission which is common to all X-ray imaging methods. Further, a model for the quantitative analysis of the inner surfaces is presented and verified. For this purpose four case studies are conducted each posing a specific challenge to the imaging task. Case study A investigates cracks in a coupon taken from an aluminum weld seam. This case study primarily serves to verify the model for quantitative analysis and prove the sensitivity to sub-resolution features. In case study B, the damage evolution in an aluminum-based particle reinforced metal-matrix composite is analyzed. Here, the accuracy and repeatability of subsequent SXRR measurements is investigated showing that measurement errors of less than 3% can be achieved. Further, case study B marks the fist application of SXRR in combination with in-situ tensile loading. Case study C is out of the highly topical field of additive manufacturing. Here, porosity in additively manufactured Ti-Al6-V4 is analyzed with a special interest in the pore morphology. A classification scheme based on SXRR measurements is devised which allows to distinguish binding defects from keyhole pores even if the defects cannot be spatially resolved. In case study D, SXRCT is applied to the analysis of hydrogen assisted cracking in steel. Due to the high X-ray attenuation of steel a comparatively high photonenergy of 50 keV is required here. This causes increased noise and lower contrast in the data compared to the other case studies. However, despite the lower data quality a quantitative analysis of the occurance of cracks in dependence of hydrogen content and applied mechanical load is possible. N2 - In der vorliegenden Arbeit werden die zwei, auf Refraktion basierende, Röntgenbildgebungsverfahren Synchrotron Röntgen-Refraktions Radiographie (engl.: SXRR) und Synchrotron Röntgen-Refraktions Computertomographie (engl.: SXRCT) für die quantitative Analyse von Rissen und Porosität in metallischenWerkstoffen angewandt. SXRR und SXRCT nutzen die Refraktion von Röntgenstrahlen an inneren Oberflächen des Materials, z.B. die Oberflächen von Rissen und Poren, zur Bildgebung. Beide Methoden sind daher empfindlich gegenüber kleineren Defekten als ihre auf Röntgenabsorption basierenden Gegenstücke, Röntgenradiographie und Röntgen-Computertomographie. Sie sind in der Lage Defekte von nanometrischer Größe zu detektieren. Bislang wurden die Methoden für die Analyse von keramischen Werkstoffen und faserverstärkten Kunststoffen eingesetzt. Die Analyse von metallischenWerkstoffen benötigt höhere Photonenenergien benötigt werden um eine ausreichende Transmission zu erreichen. Dies hat kleinere Refraktionswinkel, und damit geringeren Bildkontrast, zur Folge, da der Brechungsindex von der Photonenenergie abhängt. Hier wird erstmals eine umfassende Studie vorgelegt, welche die Möglichkeiten zur Untersuchung metallischer Werkstoffe mittels SXRR und SXRCT untersucht. Es wird gezeigt, dass der geringere Kontrast, verursacht durch die kleineren Refraktionswinkel, überwunden werden kann. Somit ist die einzig verbleibende Beschränkung die erreichbare Transmission, die alle Röntgenbildgebungsverfahren gemeinsam haben. Darüber hinaus wird ein Modell für die quantitative Auswertung der inneren Oberflächen präsentiert und verifiziert. Zu diesem Zweck werden vier Fallstudien durchgeführt, wobei jede eine spezifische Herausforderung darstellt. In Fallstudie A werden Risse in einer Probe aus einer Aluminiumschweißnaht untersucht. Diese Fallstudie dient hauptsächlich dazu das Modell für die quantitative Analyse zu verifizieren und die Empfindlichkeit gegenüber Strukturen unterhalb des Auflösungsvermögens zu beweisen. In Fallstudie B wird die Entwicklung der Schädigung in einem aluminiumbasierten partikelverstärktem Metall-Matrix Komposit untersucht. Dabei wird die Genauigkeit und Wiederholbarkeit der SXRR Messungen analysiert und es wird gezeigt das Messfehler kleiner 3% erreicht werden können. Darüber hinaus wird in Fallstudie B erstmals SXRR in Kombination mit in-situ Zugbelastung eingesetzt. Fallstudie C ist aus dem hochaktuellen Bereich der additive Fertigung. Hier wird Porosität in additiv gefertigtem Ti-Al6-V4 analysiert mit besonderem Augenmerk auf der Morphologie der Poren. Es wurde ein Verfahren zur Klassifizierung, basierend auf SXRR Messungen, erfunden, welches Bindefehler und Poren voneinander unterscheiden kann auch wenn die Defekte nicht räumlich aufgelöst werden können. In Fallstudie D wird SXRCT zur Analyse von wasserstoffunterstützter Rissbildung in Stahl angewandt. Wegen der hohen Röntgenschwächung des Stahls muss hier mit 50 keV eine vergleichsweise hohe Photonenenergie genutzt werden. Dadurch zeigen die Daten ein erhöhtes Rauschen und geringeren Kontrast verglichen mit den anderen Fallstudien. Allerdings ist es, trotz der geringeren Datenqualität, möglich das Auftreten von Rissen in Abhängigkeit der Wasserstoffkonzentration und mechanischen Belastung zu untersuchen. KW - Synchrotron X-ray refraction computed tomography KW - Lean duplex steel X2CrMnNiN21-5-1 KW - hydrogen embrittlement KW - Metal-matrix composite KW - Al6061 KW - Ti-Al6-V4 KW - In-situ tensile test PY - 2022 SP - 1 EP - 71 AN - OPUS4-54385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mishurova, Tatiana T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Additive manufacturing technologies provide unique possibilities in the production of topologically optimized, near-net shape components. The main limiting factors affecting the structural integrity of Laser Powder Bed Fusion (LPBF) parts are manufacturing defects and residual stress (RS) because both of them are virtually inevitable. Taking into account the complex thermal history of LPBF materials, a prediction of the material behavior is not possible without experimental data on the microstructure, defect distribution, and RS fields. Therefore, this thesis aims to understand the factors that influence the LPBF Ti-6Al-4V material performance the most, covering both the production and the post-processing steps of manufacturing. Indeed, a parametric study on the influence of manufacturing process and post-processing on RS, defects and microstructure was performed. It was found that the volumetric energy Density (EV), commonly used for the LPBF process optimization, does neither consider the pore shapes and distribution, nor the influence of individual parameters on the volume fraction of pores. Therefore, it was recommended not to use EV without great care. It was shown that the Position on the base plate has a great impact on the amount of RS in the part. The micromechanical behavior of LPBF Ti-6Al-4V was also studied using in-situ Synchrotron X-ray diffraction during tensile and compression tests. Diffraction elastic constants (DEC), connecting macroscopic stress and (micro) strain, of the LPBF Ti-6Al-4V showed a difference from the DEC of conventionally manufactured alloy. This fact was attributed to the peculiar microstructure and crystallographic texture. It was therefore recommended to determine experimentally DECs whenever possible. Low Cycle Fatigue (LCF) tests at a chosen operating temperature were performed to evaluate the effect of post-treatment on the mechanical performance. Through the information on the microstructure, the mesostructure, and the RS, the LCF behavior was (indirectly) correlated to the process parameters. It was found that the fatigue performance of LPBF samples subjected to hot isostatic pressing is similar to that of hot-formed Ti-6Al-4V. The tensile RS found at the surface of LPBF as-built samples decreased the fatigue life compared to the heat-treated samples. The modification of the microstructure (by heat treatment) did not affect the Fatigue performance in the elastic regime. This shows that in the absence of tensile RS, the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Computed tomography PY - 2021 SP - 1 EP - 143 CY - RWTH Aachen AN - OPUS4-54389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Erenberg, Marina T1 - Analyse des Brandverhaltens von Stoßdämpfern für Behälter zum Transport radioaktiver Stoffe N2 - Stoßdämpfer, die zum Schutz von Behältern zum Transport radioaktiver Stoffe eingesetzt werden und welche häufig aus von Stahlblech ummantelten, geschichtetem Holz bestehen, reduzieren bei einem etwaigen Unfall die auf den Behälterkörper wirkende mechanische Belastung erheblich. In Zulassungsverfahren muss die Sicherheit der jeweiligen Behälterkonstruktion nachgewiesen werden, wobei u. a. der Nachweis erbracht werden muss, dass die Behälter definierten Prüfbedingungen widerstehen. Diese beinhalten Aufprallsequenzen aus verschiedenen Höhen und Positionen sowie ein anschließendes das Versandstück 30 min lang allumhüllendes Feuer bei 800°C. Falls Stoßdämpfer infolge der 30-minütigen Feuerbeanspruchung in Brand geraten, dürfen diese unter den Prüfbedingungen nicht gelöscht werden. Die Auswirkungen auf die Sicherheit des Behälters sind hierbei zu untersuchen. Das ist die Basis für die in dieser Arbeit durchgeführten Untersuchungen zum Brandverhalten von stahlblechumkapselten Holzstrukturen mit dem Ziel der Bewertung der daraus resultierenden zusätzlichen thermischen Belastung auf den Behälter. Ein wesentlicher Bestandteil war die Durchführung eines Großbrandversuchs, bei dem ein originalgroßer Stoßdämpfer auf dem Brandprüfstand während einer 30-minütigen Feuerphase entzündet wurde. Der Stoßdämpfer hatte ein Volumen von 3m³ und war mit aus den Prüfbedingungen resultierenden Vorschädigungen versehen. Es wurde ein Prüfstand zur Messung der variablen Wärmeleistung des brennenden Stoßdämpfers entwickelt. Die Wärme wird dabei in den Energieaufnahmebehälter (EAB) eingetragen. Aufgrund der entwickelten Temperaturregelung konnte die Wärmeleistung mit geringen Messfehlern bestimmt werden. Dabei wurde der EAB um maximal 10 K erwärmt. Im Großbrandversuch wurde gezeigt, dass der vorgeschädigte Stoßdämpfer 72 h lang brannte und dass eine signifikante Wärmeleistung in den EAB eingetragen wurde. Die während des Stoßdämpferbrands erzeugte Energie betrug ein Vielfaches im Vergleich zur Wärmeleistung, die allein durch das IAEA-Feuer eingetragen wird. Temperaturen von bis zu 1100°C wurden erreicht. Im Versuch wurde Flammenschlagen im Stoßdämpferinnern und das Glühen der Stoßdämpferstahlblechummantelung beobachtet. Bewusst dessen, dass ein einzig durchgeführter Brandversuch nur unzulängliche Aussagekraft hat, um das Brandverhalten von Stoßdämpfern zu beschreiben, wurde in weiteren Kleinbrandversuchen die Parameterabhängigkeit beim Brand von stahlblechumkapselten Holzstrukturen untersucht. Dafür wurde das Brandverhalten von 8 zylinderförmigen 0,07m³ großen Probekörpern bei variabler Schadstellengröße getestet. In der Bewertung der Kleinbrandversuche konnte gezeigt werden, dass eine kritische Schadstellengröße existiert und welche Streubreite in den Kleinbrandversuchen vorliegt. Die Kleinbrandversuche können damit Aufschluss darüber geben, welche Abweichungen in weiteren Großbrandversuchen zu erwarten wären. KW - Stoßdämpfer KW - Holz KW - Brand PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:ma9:1-1981185920-397479 SP - 1 EP - 154 PB - Otto-von-Guericke-Universität Magdeburg CY - Magdeburg AN - OPUS4-54263 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Reichelt, Manuel T1 - Untersuchungen zu ungeschmiertem Schwingungsverschleiß an 100Cr6-Kugeln gegen 100Cr6-Ebenen N2 - Die vorliegende Doktorarbeit handelt von der Bestimmung und der Untersuchung vom Verschleißvolumen und vom Verschleißkoeffizienten bei ungeschmierten Modellversuchen an 100Cr6-Ebenen und -Kugeln unter Schwingungsbeanspruchung. Die experimentelle Arbeit wurde mittels statistischer Auswertung einer großen Menge von eigenen und früheren Versuchsdaten an fünf Tribometern bei umfangreicher Variation der Beanspruchungsparameter durchgeführt. Ziel war es, die Wiederholbarkeit und Reproduzierbarkeit der experimentellen Ergebnisse zu überprüfen sowie das Archard-Gesetz zu verifizieren. Des Weiteren wurde der Einfluss der Luftfeuchtigkeit auf den Verschleiß untersucht. KW - Verschleißkoeffizient KW - 100Cr6-Stahl KW - Gesetz von Archard KW - Verschleiß-Map KW - relative Luftfeuchtigkeit PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522664 SP - 1 EP - 118 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-52266 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Detjens, Marc T1 - Untersuchung des Elektrolyseprinzips zur Bestimmung von geringen Feuchtegehalten und der Einsatz von ionischen Flüssigkeiten als neuartige Sensorbeschichtung N2 - Feuchte, sei es Material- oder Gasfeuchte, ist eine wichtige Messgröße bei der Qualitätsbeurteilung von Kunststoffen, landwirtschaftlichen Erzeugnissen, Energieträgern, Arzneimitteln, industriell und medizinisch verwendeten Gasen. Deswegen gibt es ein Interesse Feuchtemesserfahren hinsichtlich Präzision, Wiederholbarkeit, Rückführbarkeit und Stabilität kontinuierlich zu verbessern. Ein bewährtes Messprinzip für diese Aufgabe wurde bereits 1959 von Keidel entwickelt und basiert auf der Absorption und Elektrolyse von Wasserdampf. Der einfache Aufbau dieses Prinzips besteht aus einem Sensorelement, einer Gleichspannungsquelle, einem Digitalmultimeter und einen geregelten Gasstrom über den Sensor. Nach dem Faraday’schen Gesetz der Elektrolyse korreliert bei dem Messprinzip die Ladungsmenge mit der elektrolysierten Wassermasse. Jedoch bedarf es in der heutigen Zeit einer Validierung der Sensoren, weil durch gezielte Miniaturisierung weniger aktive Fläche vorhanden ist und somit das Faraday’sche Gesetz nicht vollständig anwendbar ist. In dieser Arbeit wurden coulometrische Sensoren mit einer planaren Elektrodenstruktur hinsichtlich der Einflüsse von unterschiedlichen Gasen, der Gastemperatur und dem -druck untersucht. Zusätzlich wurde eine neuartige Sensorbeschichtung basierend auf einer ionischen Flüssigkeit getestet. Des Weiteren wurde ein Messgerät für die abgestufte Bestimmung der Materialfeuchte und Wasseraktivität entwickelt und dessen messtechnischer Einsatz untersucht. KW - Coulometrie KW - Feuchtigkeitsmessung KW - Ionische Flüssigkeit KW - Mikrosensor PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:ilm1-2019000209 SP - 1 EP - 118 CY - Technische Universität Ilmenau AN - OPUS4-52177 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-470418 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Daschewski, Maxim T1 - Thermophony in real gases - Theory and applications N2 - A thermophone is an electrical device for sound generation. The advantages of thermophones over conventional sound transducers such as electromagnetic, electrostatic or piezoelectric transducers are their operational principle which does not require any moving parts, their resonance-free behavior, their simple construction and their low production costs. In this PhD thesis, a novel theoretical model of thermophonic sound generation in real gases has been developed. The model is experimentally validated in a frequency range from 2 kHz to 1 MHz by testing more than fifty thermophones of different materials, including Carbon nano-wires, Titanium, Indium-Tin-Oxide, different sizes and shapes for sound generation in gases such as air, argon, helium, oxygen, nitrogen and sulfur hexafluoride. Unlike previous approaches, the presented model can be applied to different kinds of thermophones and various gases, taking into account the thermodynamic properties of thermophone materials and of adjacent gases, degrees of freedom and the volume occupied by the gas atoms and molecules, as well as sound attenuation effects, the shape and size of the thermophone surface and the reduction of the generated acoustic power due to photonic emission. As a result, the model features better prediction accuracy than the existing models by a factor up to 100. Moreover, the new model explains previous experimental findings on thermophones which cannot be explained with the existing models. The acoustic properties of the thermophones have been tested in several gases using unique, highly precise experimental setups comprising a Laser-Doppler-Vibrometer combined with a thin polyethylene film which acts as a broadband and resonance-free sound-pressure detector. Several outstanding properties of the thermophones have been demonstrated for the first time, including the ability to generate arbitrarily shaped acoustic signals, a greater acoustic efficiency compared to conventional piezoelectric and electrostatic airborne ultrasound transducers, and applicability as powerful and tunable sound sources with a bandwidth up to the megahertz range and beyond. Additionally, new applications of thermophones such as the study of physical properties of gases, the thermo-acoustic gas spectroscopy, broad-band characterization of transfer functions of sound and ultrasound detection systems, and applications in non-destructive materials testing are discussed and experimentally demonstrated. N2 - Ein Thermophon ist ein elektrisches Gerät zur Schallerzeugung. Aufgrund der fehlenden beweglichen Teile verfügen Thermophone über mehrere Vorteile gegenüber den herkömmlichen elektromagnetischen, elektrostatischen oder piezoelektrischen Schallwandlern. Besonders bemerkenswert sind das resonanz- und nachschwingungsfreie Verhalten, die einfache Konstruktion und die niedrigen Herstellungskosten. Im Rahmen dieser Doktorarbeit wurde ein neuartiges theoretisches Modell der thermophonischen Schallerzeugung in Gasen entwickelt und experimentell verifiziert. Zur Validierung des Modells wurden mehr als fünfzig Thermophone unterschiedlicher Größen, Formen und Materialien, darunter Kohlenstoff-Nanodrähte, Titan und Indium-Zinnoxid zur Erzeugung von Schall in Gasen wie Luft, Argon, Helium, Sauerstoff, Stickstoff und Schwefelhexafluorid in einem Frequenzbereich von 2 kHz bis 1 MHz eingesetzt. Das präsentierte Modell unterscheidet sich von den bisherigen Ansätzen durch seine hohe Flexibilität, wobei die thermodynamischen Eigenschaften des Thermophons und des umgebenden Gases, die Freiheitsgrade und das Eigenvolumen der Gasatome und Moleküle, die Schallschwächungseffekte, die Form und Größe des Thermophons, sowie die Verringerung der erzeugten akustischen Leistung aufgrund der Photonenemission berücksichtigt werden. Infolgedessen zeigt das entwickelte Modell eine um bis zu einem Faktor 100 höhere Vorhersagegenauigkeit als die bisher veröffentlichten Modelle. Das präsentierte Modell liefert darüber hinaus eine Erklärung zu den Ergebnissen aus den Vorarbeiten, die von den bisherigen Modellen nicht abschließend geklärt werden konnten. Die akustische Eigenschaften der Thermophone wurden unter Verwendung von einzigartigen hochpräzisen Versuchsaufbauten getestet. Dafür wurde ein Laser-Doppler-Vibrometer in Kombination mit einer dünnen Polyethylenfolie verwendet, welche als breitbrandiger und resonanzfreier Schalldruckdetektor fungiert. Somit konnten mehrere herausragende akustische Eigenschaften der Thermophone zum ersten Mal demonstriert werden, einschließlich der Möglichkeit, beliebig geformte akustische Signale zu erzeugen, eine größere akustische Wirksamkeit im Vergleich zu herkömmlichen Luftultraschallwandlern und die Anwendbarkeit als leistungsfähige beliebig abstimmbare Schallquellen mit einer Bandbreite bis in den Megahertz-Bereich. Zusätzlich werden neue Anwendungen von Thermophonen wie die Untersuchung der physikalischen Eigenschaften von Gasen, die thermoakustische Gasspektroskopie, eine breitbandige Charakterisierung der Übertragungsfunktionen von Schall- und Ultraschallmesssystemen und Anwendungen in der zerstörungsfreien Materialprüfung demonstriert. KW - Acoustic actuator KW - Thermoacoustics KW - Sound source PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98866 SP - 1 EP - 85 PB - Universität Potsdam CY - Potsdam AN - OPUS4-38344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Tschirschwitz, Rico T1 - Entwicklung von Bestimmungsverfahren für Explosionskenngrößen von Gasen und Dämpfen für nichtatmosphärische Bedingungen N2 - Explosionskenngrößen bilden die Grundlage für die Bewertung von Explosionsrisiken und für die Auslegung von Explosionsschutzmaßnahmen. Typische Kenngrößen für Gase und Dämpfe sind Explosionsgrenzen, Sauerstoffgrenzkonzentration (SGK), maximaler Explosionsdruck und maximaler zeitlicher Explosionsdruckanstieg sowie die Zündtemperatur. Explosionskenngrößen sind von der Bestimmungsmethode (z. B. Zündgefäß, Zündquelle, Kriterium für die Entzündung), den Umgebungsbedingungen (z. B. Druck, Temperatur) und dem Oxidator abhängig. Für sicherheitstechnische Betrachtungen im Explosionsschutz müssen die Kenngrößen zuverlässig und vergleichbar sein. Um die Abhängigkeit vom Bestimmungsverfahren zu minimieren, sind diese genormt. Derzeit sind die bestehenden Normen fast ausschließlich für atmosphärische Bedingungen ausgelegt. Viele Prozesse in der chemischen Industrie werden jedoch unter nichtatmosphärischen Bedingungen (erhöhte Drücke, erhöhte Temperaturen, von Luft abweichende Oxidatoren) durchgeführt. Dadurch ergibt sich das Erfordernis, Explosionskenngrößen auch unter nichtatmosphärischen Bedingungen zu bestimmen. Vielfach werden bereits Explosionskenngrößen unter nichtatmosphärischen Bedingungen gemessen. Aufgrund der unterschiedlichen Bestimmungsverfahren sind die Ergebnisse nur bedingt vergleichbar. Im Rahmen der vorliegenden Arbeit wurden apparative Einflussparameter unter nichtatmosphärischen Bedingungen untersucht, mit dem Ziel, normungsreife Bestimmungsverfahren für Explosionskenngrößen unter nichtatmosphärischen Bedingungen zu entwickeln. Für Verfahren zur Bestimmung der Grenzen des Explosionsbereiches (Explosionsgrenzen, SGK) wurden Untersuchungen hinsichtlich der Mindestgröße des Zündgefäßes, geeigneter Zündkriterien und geeigneter Zündquellen durchgeführt. Aus Sicherheitsgründen sollten gerade bei hohen Anfangsdrücken möglichst kleine geschlossene Zündgefäße verwendet werden. Daher wurde das druckabhängige Mindestvolumen bis zu einem Anfangsdruck von p0 = 50 bar bestimmt. Die Ergebnisse zeigen, dass bei atmosphärischen Bedingungen Gefäße mit einem Volumen V ≥ 11 dm³ verwendet werden müssen, um den Einfluss auf die ermittelten Werte zu minimieren. Bei einem Anstieg des Anfangsdrucks verringert sich das notwendige Gefäßvolumen. Beispielsweise kann bei p0 ≥ 50 bar ein Gefäß mit einem Volumen V = 1 dm³ verwendet werden. Als Kriterium für eine Entzündung werden häufig visuelle Zündkriterien oder Druckschwellenkriterien verwendet. In detaillierten Untersuchungen wurden visuelle Kriterien, Druckkriterien und Temperaturkriterien für sieben Brenngase bis zu einem Ausgangsdruck von p0 = 20 bar miteinander verglichen. Das zuverlässigste Kriterium für eine Entzündung unter nichtatmosphärischen Bedingungen ist eine Kombination aus einem Druckschwellenkriterium von pex/p0 ≥ 1,02 oder einem Temperaturschwellenkriterium von ΔT ≥ 100 K. In den bisher genormten Bestimmungsverfahren für atmosphärische Bedingungen sind verschiedene Zünder beschrieben. Auch unter nichtatmosphärischen Bedingungen muss der Eintrag der Zündenergie zuverlässig, definiert und reproduzierbar erfolgen. Es wurde der Einfluss von Druck, Gemischzusammensetzung und konstruktiven Parametern (z. B. Elektrodenabstand) auf den Zündvorgang der Zündquellen explodierender Draht, Funkenzünder und Gleitfunkenzünder untersucht. Für die Analyse des Zündvorganges wurde ein optisches Verfahren entwickelt. Weiterhin wurden die Zünder kalorimetrisch hinsichtlich ihres realen Energieeintrages verglichen. Unter nichtatmosphärischen Bedingungen eignet sich ein explodierender Draht mit einem Drahthalbwellenzündgerät (bis p = 100 bar) oder ein Gleitfunkenzünder (bis p = 10 bar). Neben Druck und Temperatur werden Explosionskenngrößen vor allem durch den verwendeten Oxidator beeinflusst. Bisher sind kaum Werte für die Explosionsbereiche von Brenngas/Inertgas/Sauerstoff-Gemischen bei hohen Anfangsdrücken vorhanden. Daher wurden die Explosionsbereiche für die ternären Gemische CH4/N2/O2 und C2H4/N2/O2 bis zu einem Anfangsdruck von p0 = 50 bar bestimmt. Gerade in sauerstoffreichen Gemischen können Reaktionen derart schnell ablaufen, dass die Bestimmung der Explosionskenngrößen maximaler Explosionsdruck und maximaler zeitlicher Explosionsdruckanstieg nicht möglich ist. Daher wurden Untersuchungen in binären Brenngas/Sauerstoff-Gemischen bei erhöhten Ausgangsdrücken mit verschiedenen Druckmesssystemen durchgeführt. In Gemischen mit langsameren Reaktionen sind für die Druck-Zeit-Messung piezoresistive Druckaufnehmer besser geeignet. Für die Messungen bei schnelleren Reaktionen, weiter im Explosionsbereich, eignen sich eher piezoelektrische Druckaufnehmer. Damit die Druck-Zeit-Signale dieser sehr schnellen Reaktionen ausgewertet werden können, kann eine Glättung erforderlich sein. Die Messsignale wurden mit unterschiedlichen Verfahren geglättet. Die besten Ergebnisse, hinsichtlich der Genauigkeit und der Größe des Auswertebereiches, wurden mit einem Programm zu Berechnung der Verbrennungsgeschwindigkeit mittels physikalischer Modelle erzielt. Mit der Glättungsmethode dieses Verfahrens ist es möglich auch sehr schnelle Druckanstiege in sauerstoffreichen Gemischen auszuwerten. Resultierend aus den Ergebnissen der Untersuchungen sind Empfehlungen für zwei Bestimmungsverfahren zur Messung der Explosionsgrenzen und SGK sowie des maximalen Explosionsdrucks und des maximalen zeitlichen Explosionsdruckanstieges unter nichtatmosphärischen Bedingungen erarbeitet worden. KW - Sicherheitstechnische Kenngrößen KW - Explosionsgrenzen KW - Zündkriterium KW - Nichtatmosphärische Bedingungen KW - Bestimmungsverfahren PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:ma9:1-6908 SP - 1 EP - 183 PB - Otto-von-Guericke-Universität CY - Magdeburg AN - OPUS4-39131 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hahn, Marc Benjamin T1 - Quantifizierung der Schädigung von DNA in wässriger Lösung unter direkter Elektronenbestrahlung N2 - Bei der Behandlung von Krebs wird Strahlentherapie zur Zerstörung von Tumorzellen eingesetzt. Der zugrunde liegende Wirkmechanismus ist die durch ionisierende Strahlung verursachte Schädigung an Biomolekülen. Dabei kommt den Schädigungsprozessen an DNA aufgrund ihrer zentralen Rolle in Mutation und Zelltod eine besondere Bedeutung zu. Durch den hohen Wasseranteil in menschlichen Zellen findet ein Großteil der inelastischen Streuprozesse an Wassermolekülen statt und führt zur deren Radiolyse. Die so entstehenden Radiolyseprodukte sind für einen Großteil des Schadens an DNA verantwortlich. Ein detailliertes Verständnis der zugrunde liegenden molekularen Interaktion ist die Voraussetzung um effizientere Therapien zu entwickeln. Ziel dieser Arbeit ist es, die Schädigung von DNA durch ionisierende Strahlung in Abhängigkeit der inelastischen Streuevents und des Energieeintrags innerhalb des biologisch relevanten mikroskopischen Treffervolumens zu quantifizieren. Die Bestrahlungen müssen dazu in Flüssigkeit, unter Berücksichtigung der chemischen Umgebung durchgeführt werden, welche die indirekten Schäden vermittelt. Deshalb wurde eine neuartige Kombination aus Experiment und Monte- Carlo-Simulationen entworfen und angewandt. Um Elektronenbestrahlung flüssiger Lösungen innerhalb eines Rasterelektronenmikroskops zu ermöglichen, wurde ein Probenhalter mit einer für Elektronen durchlässigen Nanomembran entwickelt. So können Bestrahlungen an DNA, Proteinen, und Zellen bei verschiedenen pH-Werten, Salzkonzentrationen oder in Anwesenheit von Kosoluten durchgeführt werden. Für ein Modellsystem aus Plasmid-DNA in Wasser wurde damit die mittlere letale Dosis aus der Kombination der experimentellen Daten, Partikelstreusimulationen (Geant4-DNA) und Diffusionsberechnungen zu D1/2 = 1.7 ± 0.3 Gy bestimmt. Aus der Konvolution der Plasmidpositionen mit dem durch Elektronenstreusimulationen bestimmten ortsaufgelösten Energieeintrag wurde dessen Häufigkeitsverteilung im Targetvolumen der Plasmide sowie der mittlere mikroskopische letale Energieeintrag berechnet als E1/2 = 6 ± 4 eV . Es wurde gefolgert, dass weniger als zwei Ionisationsprozesse im sensitiven Targetvolumen der DNA im Mittel zu einem Einzelstrangbruch führen. Das für mikrodosimetrische Modellierungen wichtige Verhältnis von Einzelstrangbrüchen (SSB) zu Doppelstrangbrüchen (DSB) wurde als SSB : DSB = 12 : 1 bestimmt. Die vorgestellte Methode zur Bestimmung mikroskopischer Schaden-Dosis Relationen wurde auf weitere Klassen von Bestrahlungsexperimenten verallgemeinert. Dadurch ist die Methode unabhängig von der verwandten Primärstrahlung, der Probengeometrie und den Diffusionseigenschaften der untersuchten Moleküle anwendbar. So wird eine Vergleichbarkeit experimenteller Systeme mit inhomogenen Energieverteilungen erreicht, die bei ausschließlicher Betrachtung makroskopischer, gemittelter Größen nicht gegeben ist. Des weiteren wurden die Strahlenschutzfunktionen des kompatiblen Soluts Ectoine und sein Einfluss auf Wasser und Biomoleküle untersucht. Mittels Ramanspektroskopie wurde ein kon-zentrationsabhängiger Anstieg des Anteils der Kollektivmoden des Wassers der OH-Streckschwingungen und dessen Unabhängigkeit von der Natriumchloridkonzentration beobachtet. Molekulardynamik-Simulationen zeigten, dass die zwitterionischen Eigenschaften zur Bildung einer half-chair Konformation Ectoines führen. Die Wasserstoffbrückenbindungen in der ersten Hydrationshülle sind signifikant stabiler und besitzen höhere Lebensdauern als das Bulk-Wasser. Bestrahlung von DNA in Anwesenheit von 1 M Ectoine führt zu einer Erhöhung der Überlebensrate um den Faktor 1,41. Die Schutzfunktion wurde auf die Erhöhung des Streuquerschnitts niederenergetischer Elektronen an den akustischen Vibrationsmoden des Wasser durch Ectoine und seine Wirkung als OH-Radikalfänger zurückgeführt. Dies wurde mittels Ramanspektroskopie und Elektronenspinresonanzmessungen (ESR) nachgewiesen. N2 - To cure cancer radiation therapy is used to kill tumor cells. It is based on radiation induced damage to biomolecules. Especially DNA damage is of key interest due to its central role in apoptosis and mutation. Because of the high amount of water in biological tissue, most of the damage is caused by the secondary particles produced by the inelastic scattering of ionizing radiation and water. A detailed understanding of the underlying molecular processes under physiological conditions is the prerequisite to develop more efficient therapies. Goal of this work is to quantify the DNA damage caused by ionizing radiation in dependence of the inelastic scattering events and the energy deposit within the microscopic target volume of biological relevance. The irradiations have to be performed in liquid, under consideration of the chemical environment. Therefore, a new combination of experiment and Monte-Carlo simulations was developed and tested. To make it possible to irradiate liquids with electrons within scanning electron microscopes a new sample holder was constructed incorporating an electron transparent nanomembrane. It makes it possible to irradiate DNA, proteins or cells at different pH, salinity and in the presence of cosolutes. The median lethal dose for a model system of plasmid DNA and water was determined by the combination of experimental data, particle scattering simulations (Geant4-DNA) and Diffusion calculations as D1/2 = 1.7 ± 0.3 Gy. From the convolution of plasmid positions and the spatially resolved energy deposit, as determined by electron scattering simulations, the histogram of the energy deposit within the target volume of the plasmids and the microscopic median lethal energy deposit was calculated as E1/2 = 6 ± 4 eV . It could be deduced that on average less than two ionization events are sufficient to cause a single-strand-break. The relation of single- strand-breaks (SSB) to double-strand-breaks (DSB), which is of importance for microdosimetric modeling, was determined as SSB : DSB = 12 : 1. The presented method for the determination of microscopic dose-damage relations was further extended to be applicable for general irradiation experiments. It becomes independent of the type of primary radiation used, the experimental geometry, and the diffusional properties of the molecules under investigation. This way different experimental systems with varying, inhomogeneous energy deposit characteristics become comparable with each other, which is not possible when only macroscopic averaged values are taken into account. In addition, the radiation protection properties of the compatible solute ectoine, as well as ist influence on the water properties and biomolecules were investigated. Raman spectroscopy revealed a concentration dependent increase of the collective water modes in the OH-stretching region, which was found to be independent of the sodium chloride concentration. Molecular dynamic simulations showed that the zwitterionic properties of ectoine lead to its half-chair conformation. The hydrogen bonds in the first hydration shell are more stable and have an increased lifetime compared to the bulk water. Irradiation experiments with DNA in the presence of 1 M ectoine revealed an increase of the survival rate by a factor of 1.41 as compared to the absence of ectoine. The protective properties of ectoine result from the increase of the inelastic scattering probabilities of low energy electrons at the acoustic vibrational modes of water and its properties as OH-radical scavenger. This was shown by Raman spectroscopy and electron paramagnetic resonance measurements (EPR). KW - DNA KW - Radiation KW - Radiation damage KW - Dosimetry KW - Microdosimetry KW - DNA damage KW - DNA radiation damage KW - Low energy electrons KW - Electron irradiation KW - Hydroxyl radicals KW - Ectoine KW - Ectoine protein interaction KW - Ectoine DNA interaction KW - Ectoine radiation protection KW - Ectoine salt KW - Cancer therapy KW - Radiation therapy KW - Ectoin PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000106497-4 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000106497 SP - 1 EP - 108 CY - Berlin AN - OPUS4-44510 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Aristia, Gabriela T1 - Polyaniline/Silicon Dioxide Composite-Based Coating for Corrosion Protection in Geothermal Systems N2 - Geothermal energy is one of the cleanest renewable alternatives to reduce the dependency on fossil fuel [1, 2]. Despite its promising future, its implementation faces various challenges, one of them being corrosion processes. To implement this energy, hot fluids are pumped from a geothermal well. These hot fluids originate from deep within the earth, so consist of different ionic species and gases in a wide range of temperatures, which lead to their corrosive nature. In terms of geothermal energy resources, Indonesia is at the forefront, with the highest preserved geothermal energy in the world of about 29 GWe and 312 potential geothermal locations [3]. Geothermal wells in Sibayak (North Sumatera), Indonesia, belong to young stratovolcanoes and have operating temperatures varying from 36 °C at the near ground surface to 310 °C at the bottom of the well, which is liquid-dominated with acidic and saline properties [4, 5]. Therefore, this geothermal fluid creates an aggressive environment that is conducive to corrosion of the powerplant infrastructure. Parts of the geothermal powerplant infrastructure, such as pipelines and heat exchangers, are commonly made of metals, e.g. carbon steel and stainless steel. Consequently, they may undergo corrosion and scaling when exposed to the geothermal fluid, especially for carbon steel. To ensure the safety and longevity of a geothermal powerplant, the infrastructure is constructed of expensive corrosion resistant alloys [6–10], e.g., titanium and Ni-Cr based alloys, or carbon steel which needs to be protected by coatings or inhibitors. To address the corrosion of carbon steel in the geothermal environment, artificial geothermal water was used to simulate a geothermal well in Sibayak, Indonesia, with pH 4 and a saline composition of 1,500 mg/l Cl-, 20 mg/l SO42-, 15 mg/l HCO3-, 200 mg/l Ca2+, 250 mg/l K+, and 600 mg/l Na+. Carbon steel underwent the most severe corrosion at 150°C in an oxygen-containing solution with a corrosion rate of 0.34 mm/year, which is approximately ten times higher than that in the absence of dissolved oxygen. In all conditions, pitting corrosion was observed, which necessitate a protection strategy on carbon steel. In order to promote a cost effective and locally available option, this work focused on an easily applicable coating which utilized local resources. Toward developing such protective coating based on the locally available resources in Indonesia which can yield good corrosion resistance and thermal stability in geothermal environment, two additional components, i.e. polyaniline (PANI) and silicon dioxide, were used to modify an alkyd-based commercial coating. The selection of the alkyd-based coating as a matrix focused on the industrial convenience basis, where the coating application procedure should be simple and easy to apply within reasonable costs. The alkyd-based coating underwent severe blistering when exposed to the artificial geothermal water at 70 and 150°C due to the reaction between CaCO3 (as one of its components) and the artificial geothermal water, as well as a possible alkyd hydrolysis in the initial stage of exposure. In the oxygen-free solution, the degradation was controlled by chemical and thermal reactions, whereas in the aerated condition, oxidization at the coating surface further accelerated polymer degradation. PANI was chosen as one of the anticorrosion pigments which was widely developed over the past decades. To investigate the interaction between PANI and the artificial geothermal water, PANI film was electrochemically deposited on the carbon steel surface and exposed to the artificial geothermal water. Electrochemically synthesized oxalate-doped PANI was protective against corrosion of carbon steel in artificial geothermal water at room temperature. The mechanism involved an exchange of electroactive species within the coating layer, as confirmed by electrochemical impedance spectra. Interaction of ionic species, such as Cl-, Na+, Ca2+ from the artificial geothermal water, with the outer layer of PANI is suggested both at 25°C and 150°C, based on the EDX spectra of the coating surface after exposure to the artificial geothermal water. Thus, the protection mechanism of PANI is not solely based on the physical barrier layer properties, but rather associated with the redox mediated properties of PANI, which selectively allow ionic species intrusion from the electrolyte into the PANI layer. Although PANI is a promising candidate as an anticorrosion coating, its morphological characterization reveals that electrochemically deposited PANI is not stable for an application at 150°C. Therefore, another approach was used to promote better protective behavior of PANI by dispersing chemically synthesized PANI in the alkyd-based coating. To enhance the thermal stability of the coating, silicon dioxide (SiO2) was added, which was able to prolong the sustainability of coated metals until 28 days compared to the unmodified alkyd-based coating, which underwent a change in color to brown/orange only within 7 days of exposure. This improvement might be associated with the role of SiO2 to proportionate the thermal expansion coefficient of the coating system to be compatible with that of carbon steel. Although the coating is thermally enhanced, the electrolyte might still intrude through the coating resulting in the change of coating color after 28 days of exposure in the artificial geothermal water. When PANI was added, the coating system provided an active corrosion protection on the carbon steel surface. The chemical and morphological characterization of the PANI-alkyd and SiO2-alkyd coating system showed that coatings were improved, and no blisters were observed, albeit the degradation continued. Based on the results of exposure tests, the combined coating system was further investigated. The combinational coating of PANI/SiO2-alkyd was used with 2 wt% of PANI and 15 wt% of SiO2. Electrochemical tests indicated cathodic protection at 150°C, as the Ecorr of PANI/SiO2 remained approximately 400 mV lower than the carbon steel potential. The impedance spectra of the combinational coating of PANI/SiO2 showed a continuous decrease in the absolute impedance value over time. A significant decrease was observed within one day of exposure, followed by a slow gradual decrease, which might be associated with water absorption in the coating. FTIR spectra revealed that several peaks associated with the organic portion of the coatings were reduced after the specimens were exposed for 6 months. However, the absorption peaks related to the inorganic portion of the coatings remained stable until 6 months. Morphological characterization of the combinational coating of PANI/SiO2 showed that there were no blisters or significant discoloration of coatings after long-term exposure for 6 months in artificial geothermal water at 150°C, indicating that the chemical degradation does not significantly affect the functionality of the coating. This clearly shows the durability of PANI/SiO2 coating in the geothermal condition, suggesting that this coating can be used for such geothermal application. However, further testing of this coating should be conducted in a real geothermal environment on-site to ensure safety and viability. KW - Geothermal KW - Corrosion KW - Coating KW - Polyaniline KW - Electrochemical impedance spectroscopy PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-refubium-26704-6 UR - https://refubium.fu-berlin.de/handle/fub188/26704 SP - 1 EP - 175 CY - Berlin AN - OPUS4-51281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -