TY - CONF A1 - Bruno, Giovanni A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Evans, alexander A1 - Serrano-Munoz, Itziar A1 - Sullivan, Romeo A1 - Farabhod, Lena A1 - Hoffmann, Michael T1 - How to experimentally determine residual stress in AM structures N2 - The experimental determination of residual stress becomes more complicated with increasing complexity of the structures investigated. Unlike the conventional and most of the additive manufacturing (AM) fabrication techniques, laser powder bed fusion (PBF-LB) allows the production of complex structures without any additional manufacturing step. However, due to the extremely localized melting and solidification, internal stress-induced deformation and cracks are often observed. In the best case, significant residual stress is retained in the final structures as a footprint of the internal stress during manufacturing. Here we report solutions to the most prevalent challenges when dealing with the diffraction-based determination of residual stress in AM structures, in particular the choice of the correct diffraction elastic constants. We show that for Nickel-based alloys, the diffraction elastic constants of AM material significantly deviate from their conventional counterparts. Furthermore, measurement strategies to overcome the hurdles appearing when applying diffraction-based techniques to complex-shaped lattice structures are presented: a) proper sample alignment within the beam, b) the proper determination of the residual stress field in a representative part of the structure (i.e., with an engineering meaning). Beyond the principal stress magnitude, the principal direcions of residual stress are discussed for different geometries and scan strategies, as they are relevent for failure criteria. We show that the RS in the lattice struts can be considered to be uniaxial and to follow the orientation of the strut, while the RS in the lattice knots is more hydrostatic. Additionally, we show that strain measurements in at least seven independent directions are necessary for the correct estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and to an informed choice on the possible strain field (i.e., reflecting the scan strategy). We finally show that if the most prominent direction is not measured, the error in the calculated stress magnitude increases in such a manner that no reliable assessment of RS state can be made. T2 - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - X-ray Computed Tomography KW - Additive Manufacturing KW - Lattice Structure KW - Inconel PY - 2024 AN - OPUS4-60423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Kromm, Arne A1 - Madia, Mauro ED - Bruno, Giovanni T1 - A Critical Discussion on the Diffraction-Based Experimental Determination of Residual Stress in AM Parts N2 - As opposed to reviewing results on experimental determination of residual stress by diffraction, this paper discusses the open issues when dealing with residual stress determination in additive manufactured parts, in particular those manufactured with laser powder bed fusion techniques. Three points are addressed in detail: (a) the proper determination of the strain-free reference d0, (b) the problem of the determination of the principal axes, and (c) the use of the correct diffraction elastic constants. It is shown that all methods to determine the strain-free reference d0 suffer from caveats, and care must be taken in evaluating the most suitable for the problem being tackled. In addition, it is shown that, in some systems, the principal axes do correspond to the geometrical axes of the specimen, but this needs to be systematically checked, especially in the case of uni- or bidirectional hatching strategies. Finally, the need to experimentally determine the proper diffraction elastic constants is underlined, especially in the case of strongly textured specimens, which again depends on the deposition strategy. T2 - ASTM ICAM 2020 – ASTM International Conference on Additive Manufacturing CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Diffraction KW - Residual Stress PY - 2020 DO - https://doi.org/10.1520/STP163120190148 VL - STP1631 SP - 122 EP - 138 PB - ASTM International CY - USA AN - OPUS4-51347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabo Rios, Alberto A1 - Mishurova, Tatiana A1 - Cordova, Laura A1 - Persson, Mats A1 - Bruno, Giovanni A1 - Olevsky, Eugene A1 - Hryha, Eduard T1 - Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L N2 - Efficient density evolution during sintering of the as-printed component is vital to reach full densification and required properties of binder jet (BJT) components. However, due to the high porosity and brittle nature of the green compact, analysis of the microstructure development during sintering is very difficult, resulting in lack of understanding of the densification process. Density development from green state (57 ± 1.6 %) up to full density (99 ± 0.3 %) was characterized by high-resolution synchrotron X-Ray computed tomography (SXCT) on BJT 316L samples from ex-situ interrupted sintering tests. Periodicity of density fluctuations along the building direction was revealed for the first time and was related to the layer thickness of ~ 42 μm during printing that decreased down to ~ 33 μm during sintering. Sintering simulations, utilizing a continuum sintering model developed for BJT, allowed to replicate the density evolution during sintering with a mean error of 2 % and its fluctuation evolution from green (1.66 %) to sintered (0.56 %) state. Additionally, simulation of extreme particle size segregation (1 μm to 130 μm) suggested that non-optimized printing could lead to undesirable density fluctuation amplitude rapid increase (~10 %) during sintering. This might trigger the nucleation of defects (e.g., layer delamination, cracking, or excessive residual porosity) during the sintering process. KW - Additive manufacturing KW - Synchrotron X-ray CT KW - Binder Jetting KW - Sintering KW - FEM Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594389 DO - https://doi.org/10.1016/j.matdes.2024.112690 SN - 0264-1275 VL - 238 SP - 1 EP - 18 PB - Elsevier AN - OPUS4-59438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, J. A1 - Agea Blanco, B. A1 - Bruno, Giovanni A1 - Günster, Jens A1 - Zocca, Andrea T1 - Self-Organization Postprocess for Additive Manufacturingin Producing Advanced Functional Structure and Material N2 - Additive manufacturing (AM) is developing rapidly due to itsflexibility in producing complex geometries and tailored material compositions. However, AM processes are characterized by intrinsic limitations concerning their resolution and surface finish, which are related to the layer-by-layer stacking process. Herein, a self-organization process is promoted as an approach to improve surface quality and achieve optimization of 3D minimal surface lightweight structures. The self-organization is activated after the powder bed 3D printing process via local melting, thereby allowing surface tension-driven viscous flow.The surface roughness Ra (arithmetic average of the roughness profile) could bedecreased by a factor of 1000 and transparent lenses and complex gyroid structures could be produced for demonstration. The concept of self-organization is further elaborated by incorporating external magnetic fields to intentionally manipulate magnetic particles, which are mixed with the polymer before printing and self-organization. This concept can be applied to develop programmable materials with specific microtextures responding to the external physical conditions. KW - Additive Manufacturing KW - Self-organization KW - Triply Periodical Minimal Surface PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540588 DO - https://doi.org/10.1002/adem.202101262 VL - 24 IS - 6 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-54058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - A powerful tool to understand, demonstrate and explain the limits of the pulsed technique in terms of detectability and localizability of AM keyhole pores has been assessed by comparing the active thermographic approach (both experimental and FEM simulations) to Computed Tomography results; ✓ µCT results demonstrate that the intended defect geometry is not achieved; indeed a network of voids (microdefects consisting of small sharp-edged hollows with a complicated, almost fractal, inner surface) was found; ✓ both Exp-PT and FEM results explains clearly why no indication of defect related to the thermal contrasts could be found during the investigation of an uncoated surface. However, the application of further data evaluations focusing on the thermal behavior and emissivity evaluation (PPT post data processing) enable the detection of some defects; ✓ coating facilitates a closer inspection of inner defects, but inhomogeneities of the coating could impair the spatial resolution and lead to the emergence of hotspots (the FEM simulation reached its limit with this extreme geometry where a 25 µm thin disc is considered at a 1 cm thick specimen in millisecond time resolution); ✓ both Exp-PT and FEM results allow the conclusion that very short pulses of 200 ms or shorter should be sufficient to detect these defects below, but near the surface; besides a short duration of the thermal phenomenon it should be emphasized, about 0.04 s (high frame rate camera); T2 - Convegno AIAS 2020 CY - Online meeting DA - 02.09.2020 KW - Additive Manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography PY - 2020 AN - OPUS4-51922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability to detect and localize typical defects of laser powder bed fusion (L‑PBF) process: an experimental investigation with different non‑destructive techniques N2 - Additive manufacturing (AM) technologies, generally called 3D printing, are widely used because their use provides a high added value in manufacturing complex-shaped components and objects. Defects may occur within the components at different time of manufacturing, and in this regard, non-destructive techniques (NDT) represent a key tool for the quality control of AM components in many industrial fields, such as aerospace, oil and gas, and power industries. In this work, the capability of active thermography and eddy current techniques to detect real imposed defects that are representative of the laser powder bed fusion process has been investigated. A 3D complex shape of defects was revealed by a μCT investigation used as reference results for the other NDT methods. The study was focused on two different types of defects: porosities generated in keyhole mode as well as in lack of fusion mode. Different thermographic and eddy current measurements were carried out on AM samples, providing the capability to detect volumetric irregularly shaped defects using non-destructive methods. KW - Additive Manufacturing KW - Defect detection KW - Thermography KW - Eddy-current testing KW - Micro-computed tomography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546680 DO - https://doi.org/10.1007/s40964-022-00297-4 SN - 2363-9512 VL - 7 IS - 6 SP - 1239 EP - 1256 PB - Springer AN - OPUS4-54668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Ulbricht, Alexander A1 - Krankenhagen, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - Active thermography is a fast, contactless and non-destructive technique that can be used to detect internal defects in different types of material. Volumetric irregularities such as the presence of pores in materials produced by the Additive Manufacturing processes can strongly affect the thermophysical and the mechanical properties of the final component. In this work, an experimental investigation aimed at detecting different pores in a sample made of stainless AISI 316L produced by Laser Powder Bed Fusion (L-PBF) was carried out using pulsed thermography in reflection mode. The capability of the technique and the adopted setups in terms of geometrical and thermal resolution, acquisition frequency and energy Density of the heating source were assessed to discern two contiguous pores as well as to detect a single pore. Moreover, a quantitative indication about the minimum resolvable pore size among the available and analysed defects was provided. A powerful tool to assess the Limits and the opportunities of the pulsed technique in terms of detectability and localizability was provided by comparing active thermography results to Computed Tomography as well as a related Finite Element Analysis (FEA) to simulate the pulsed heating transfer with Comsol. T2 - 49th Italian Association for Stress Analysis Conferencee (AIAS 2020) CY - Online meeting DA - 02.09.2020 KW - Additive manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography KW - Micro-CT PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519231 DO - https://doi.org/10.1088/1757-899X/1038/1/012018 VL - 1038 SP - 1 EP - 17 PB - Institute of Physics CY - London AN - OPUS4-51923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Online ET with MR Sensor Arrays for LPBF Parts N2 - In this presentation we discuss the online monitoring of LPFB parts using eddy current testing with magenoresistive sensor arrays. The underlying principle, the developed hardware and the results of the firt online monitoring are described in the presentation. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 19.04.2021 KW - Eddy current testing KW - LPBF KW - GMR KW - SLM KW - Haynes282 KW - Additive manufacturing PY - 2021 AN - OPUS4-52700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Eddy Current Testing for Laser Beam Melting N2 - This poster presents a new application for high-spatial resolution eddy current testing (ET) with magnetoresistive (MR) sensor arrays for additive manufacturing (AM) T2 - Workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - GMR KW - Additive Manufacturing KW - 316L KW - LBM KW - SLM KW - Eddy Current PY - 2019 AN - OPUS4-47992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Electromagnetic testing for additive manufacturing N2 - This talk presents a new application for high-spatial resolution eddy current testing (ET) with magneto resistive (MR) sensor arrays. With rising popularity and availability of additive manufacturing (AM), companies mainly in the aerospace sector, set high requirements on quality control of AM parts, especially produced with selective laser melting (SLM). Since it was shown that those parts are prawn to flaws like pores or cracks, every part needs to be tested. Therefore, NDT Methods, like ET, could help to characterize SLM parts. Research on ET has shown, that offline ET with high spatial resolution MR sensor arrays is possible and that flaws as small as 50 µm could be detected while significantly reducing testing time. In this talk a first approach on automated online ET method for testing SLM parts is proposed. An approach with hundreds of MR sensor is made to maintain spatial resolution and short testing times. Classic signal conditioning methods are used to reduce cost and complexity while maintaining high testing bandwidths. The proposed idea enables further research on automated generation of testing reports, process control or automated flaw curing. T2 - ICWAM 2019 CY - Metz, France DA - 05.06.2019 KW - GMR KW - Eddy Current KW - LBM KW - SLM KW - LPBF KW - Additive Manufacturing PY - 2019 AN - OPUS4-48201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Heterodyne Eddy Current Testing Using Magnetoresistive Sensors for Additive Manufacturing Purposes N2 - In recent years additive manufacturing technologies have become widely popular. For complex functional components or low volume production of workpieces, laser powder bed fusion can be used. High safety requirements, e.g. in the aerospace sector, demand extensive quality control. Therefore, offline non-destructive testing methods like computed tomography are used after manufacturing. Recently, for enhanced profitability and practicality online non-destructive testing methods, like optical tomography have been developed. This paper discusses the applicability of eddy current testing with magnetoresistive sensors for laser powder bed fusion parts. For this purpose, high spatial resolution giant magnetoresistance arrays are utilized for testing in combination with a single wire excitation coil. A heterodyne principle minimizes metrology efforts. This principle is compared to conventional signal processing in an eddy current testing setup using an aluminum test sample with artificial surface defects. To evaluate the influence of the powder used in the manufacturing process on eddy current testing and vice versa, a laser powder bed fusion mock-up made from stainless steel powder (316L) is used with artificial surface defects down to 100 µm. This laser powder bed fusion specimen was then examined using eddy current testing and the underlying principles. KW - Eddy current testing KW - Heterodyning KW - Laser powder bed fusion KW - Giant magnetoresistance KW - Additive manufacturing KW - 316L PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506140 DO - https://doi.org/10.1109/JSEN.2020.2973547 SN - 1530-437X VL - 20 IS - 11 SP - 5793 EP - 5800 PB - IEEE AN - OPUS4-50614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Przyklenk, A. A1 - Bosse, H. A1 - Zeleny, V. A1 - Czułek, D. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Yandayan, T. A1 - Phillips, D. A1 - Meli, F. A1 - Ragusa, C. S. A1 - Flys, O. A1 - Favre, G. T1 - The European Metrology Network (EMN) for Advanced Manufacturing N2 - Advanced Manufacturing and Advanced Materials have been identified by the European Commission as one of six Key Enabling Technologies (KETs), the full exploitation of which will create advanced and sustainable economies. Metrology is a key enabler for progress of these KETs. EURAMET, which is the association of metrology institutes in Europe, has addressed the vital importance of Metrology for these KETs through the support for the creation of a European Metrology Network for Advanced Manufacturing. The EMN for Advanced Manufacturing (AdvanceManu) was approved in June 2021 and held the formal kick-of meeting in October 2022. The EMN comprises both National Metrology Institutes (NMIs) from across Europe and other designated Institutes (Dis). The EMN is organized in three sections; Advanced Materials, Smart Manufacturing Systems and Manufactured components and products. The aim of the EMN is to engage with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large & SMEs, industry organisations, existing networks and academia) with the aim to prepare a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. In the shorter term, an orientation paper is aimed to be produce to in the context of the European Partnership for Metrology. In addition to the SRA, the EMN will establish knowledge and technology transfer and promotion plan. This includes leveraging the existing research results from the completed and running EMPIR JRP projects funded through EURAMET. This presentation will outline the EMN for Advanced Manufacturing, describing the structures and goals, the route to the production of the SRA and the progress made to date identifying the key metrology challenges across the related Key Industrial Sectors (KICs). In particular, the presentation aims to inform the community on how to be involved in the shaping of the strategic research agenda for the future of Metrology for Advanced Manufacturing and Advanced Materials. T2 - 3D Metrology Conference (3DMC) CY - Online meeting DA - 08.11.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Network (EMN) KW - Strategic Research Agenda (SRA) KW - JNP PY - 2021 AN - OPUS4-54099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Additive manufacturing (AM) technologies are experiencing an exceedingly rapid growth, driven by their potential through layer wise deposition for transformational improvements of engineering design, leading to efficiency and performance improvements. Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) method which permits the fabrication of complex structures that cannot otherwise be produced via conventional subtractive manufacturing methods. Nevertheless, the rapid cooling rates associated with this process results in the formation of significant and complex residual stress (RS) fields. A large body of both experimental and simulation research has been dedicated in recent years to the control and mitigation of RS in AM. In order to validate simulations with the end goal of being able to model the residual stress state in AM components and to devise strategies for their reduction during manufacturing, experimental methods need to be able to accurately determine 3D residual stresses fields in complex geometries. Several destructive and non-destructive methods can be used to analyze the RS state, the choice of which depends on the geometry and the information required. Diffraction-based methods using penetrating neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk residual stresses in complex components and track their changes following applied thermal or mechanical loads. This presentation will overview the success stories of using large scale facilities by the BAM for the characterization of residual stresses in additively manufactured metallic alloys. In particular, the study of the influence of process parameters on the residual stress state and the relaxation of these stresses through heat treatment will be presented. However there remains challenges to overcome particularly of the hypotheses underlying the experimental determination of residual stresses, which will be discussed. T2 - 10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - L-PBF KW - AGIL PY - 2021 AN - OPUS4-54105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Introduction to AGIL N2 - An introduction to the Themenfeld Material project AGIL will be presented. The concept of the project, the work package structure and the material used within the project will be presented. T2 - 2nd Workshop on In situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - AGIL KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion PY - 2021 AN - OPUS4-54107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Metal Additive manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) enable the fabrication of complex structures, giving rise to potential improvements in component and manufacturing efficiency. However, the processes are typically characterized by the generation of high magnitude residual stress (RS) which can have detrimental consequences for subsequent applications. Therefore, the characterization of these RS fields and the understanding of their formation and mitigation through optimized processing is crucial for the wider uptake of the technology. Due to the potential complex nature and high value of components manufactured by LPBF, it is important to have suitable characterisation methods which can determine the spatial variations of RS in a non-destructive manner. Neutron diffraction is considered to be the best suited for these requirements. However, the microstructures developed in the complex thermal cycles experience in the production can pose challenges to the ND method for RS analysis. The BAM has conducted significant research over the past years to overcome these obstacles, enabling higher confidence in the RS determined in LPBF materials by neutron diffraction. This contribution will overview some of these advancements made recently at European neutron sources including on Stress-Spec at FRM2/MLZ. T2 - MLZ User Meeting 2021 CY - Online meeting DA - 07.12.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - AGIL KW - Manufact PY - 2021 AN - OPUS4-54044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Sprengel, Maximilian A1 - Madia, Mauro A1 - Kromm, Arne T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD DA - 07.10.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Laquai, René A1 - Ulbricht, Alexander A1 - Serrano Munoz, Itziar A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Non destructive characterization in Additive manufacturing N2 - An overview of non destructive characterisation in additively manufactured materials using computed tomography, refraction and diffraction based stress analysis T2 - BAM-IFW workshop CY - IFW Dresden, Germany DA - 28.03.2019 KW - Residual stress analysis KW - Additive manufacturing KW - Computed tomography KW - Diffraction KW - X-ray refraction PY - 2019 AN - OPUS4-49842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Bruno, Giovanni T1 - Residual stresses in am review and oulook of activities at BAM N2 - Critical discussion of residual stress Analysis in additive manufacturing from examples in literature and an overview of activities at BAM T2 - Workshop on Fatigue of Additive Manufactured Metallic Components CY - BAM, Berlin, Germany DA - 16.05.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. In parallel, using X-ray computed tomography we also observe that porosity is mainly concentrated in the contour region, except in case where the laser speed is small. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - AGIL Project - Microstructure development in additively manufactured metallic components: from powder to mechanical failure N2 - Overview of the concept of the AGIL Project, work packages and Prior published work from BAM on the subject T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - BAM, Berlin-Adlershof, Germany DA - 12.09.2018 KW - AGIL KW - Additive manufacturing PY - 2018 AN - OPUS4-46100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual stresses Analysis in Additively Manufactured alloys using neutron diffraction (L-PBF) N2 - An overview of recent progress at BAM of residual stress analysis in additively manufactured, in particular Laser Powder Bed Fusion of metallics materials, using neutron diffraction will be presented. This will cover important topics of the stress-free reference, the diffraction elastic moduli and principal stress determination. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Berlin, Germany DA - 28.03.2023 KW - AGIL KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2023 AN - OPUS4-59177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Manufacturing a safer world: Diffraction based residual stress analysis for metal additive manufacturing N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, with associated potential gains in performance and efficiency. However, high magnitude residual stresses (RS) are often a product of the rapid thermal cycles typical of the layerwise process. Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterisation of these RS is essential for safety related engineering application and supports the development of reliable numerical models. Diffraction-based methods for RS analysis using neutrons and high energy X-rays enable non-destructive spatially resolved characterisation of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys as a function of process parameters. In addition, the challenges posed by the textured and hierarchical microstructures of LPBF materials on diffraction-based RS analysis in AM materials will be discussed. This will include the question of the d0 reference lattice spacing and the appropriate choice of the diffraction elastic constants (DECs) to calculate the level of RS in LPBF manufactured alloys. T2 - 11th INternational Conference on Residual Stress (ICRS11) CY - Online meeting DA - 28.03.2021 KW - Residual stress analysis KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2022 AN - OPUS4-54676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Ageing behaviour of laser powder bed fused 316L: a powder to failure approach N2 - Laser powder bed fusion (LPBF) is an additive manufacturing process for materials which inherently tends to yield various degrees of metastable hierarchical microstructures, defects and high residual stresses in the as-built condition depending on the process parameters. The understanding of the evolution of these typical features during heat treatment and subsequent thermal and mechanical ageing is crucial for the wider acceptance for safety critical structures. A multi-disciplinary research project at BAM studying the development of the microstructure, defects, residual stresses typical of LPBF 316L and their evolution during thermal and mechanical ageing has led to insights into the stability of these inherent features. This presentation aims to give a broad overview of the project with a few specific cases of investigation. Firstly, the formation of residual stresses, the nature of the initial microstructure, the tensile properties and a modelling approach to understand the anisotropy will be presented. This will be followed by examples of studies of their evolution during heat treatment, long term thermal exposure, and room temperature and high temperature mechanical testing compared to a baseline of conventional wrought variant of the same alloy. T2 - International Conference on Additive Manufacturing 2021 (ICAM 2021) CY - Online meeting DA - 01.11.2021 KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2021 AN - OPUS4-54106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Sprengel, Maximilian A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - Diffraction based residual stress analysis for laser powder bed fusion alloys N2 - Laser Powder Bed Fusion (PBF-LB/M) is a layer wise metal additive manufacturing (AM) technology, which enables significant advancements of component design, leading to potential efficiency and performance improvements. However, the thermal cycles inherent to the process comprising large localized thermal gradients and repeated melting and solidification cycles leads to the generation of high magnitude residual stresses. These residual stresses can be detrimental both during manufacturing of components and in subsequent application. Therefore, a deep understanding of the influence of process parameters on the residual stresses are crucial for efficient manufacturing and safe application. The experimental characterization of these residual stresses is therefore crucial and can provide a reliable baseline for simulations of both the process and applications. Diffraction-based methods for residual stress analysis using penetrating neutrons and high energy X-rays enable non-destructive spatially resolved characterization of both surface and bulk residual stresses. However, the unique microstructural features inherent to the process can challenge some of our assumptions when using these methods. These challenges include the determination of a stress-free reference, the use of correct elastic constants (both SCEC and DEC) and the influence of surface roughness, texture, and porosity on residual stresses. This presentation will detail recent insights and recommendations for the characterization of residual stresses in a range of PBF-LB/M metallic alloys (Fe, Ni, Al and Ti) T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2024 AN - OPUS4-60443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Kelleher, J. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - RS analysis in laser powder bed fused austenitic stainless steel N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - Laser Powder Bed Fusion KW - AGIL KW - 316L PY - 2024 AN - OPUS4-60445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Przyklenk, A. A1 - Bosse, H. A1 - Zeleny, V. A1 - Czułek, D. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Yandayan, T. A1 - Phillips, D. A1 - Meli, F. A1 - Ragusa, C. S. A1 - Flys, O. T1 - European Metrology Network for Advanced Manufacturing N2 - The progress of Advanced Manufacturing, which has been identified by the European Commission as a Key Enabling Technology (KET) for future economic and societal progress is strongly reliant on the development of metrology capabilities. EURAMET, the association of metrology institutes in Europe, has established metrology research programs to address the metrology requirements across a spectrum of different thematic areas. In order to leverage the benefits of these developments on the wider industrial landscape, a high-level coordination of the metrology community supporting the Advanced Manufacturing landscape is required. This coordination is aimed to be achieved by the establishment of European Metrology Networks (EMNs), which are intended by EURAMET to provide a sustainable structure for stakeholder engagement and support. The joint networking project 19NET01 AdvManuNet funded by EMPIR for 4 years, started in June 2020 and aims to accelerate the process of establishing an EMN to strengthen Europe’s position in Advanced Manufacturing. The AdvManuNet project aims to support the establishment of an EMN on Advanced Manufacturing via the following specific aims: 1. Creation of a single hub for stakeholder engagement across the landscape of various industrial sectors including relevant societies and standardization bodies. 2. Development of a Strategic Research Agenda (SRA) and roadmaps for Advanced Manufacturing metrology based on the stakeholder engagement activities, considering current gaps in metrological capabilities existing networks and roadmaps. 3. Establish a knowledge-sharing program for Advanced Manufacturing stakeholders, promoting the dissemination and exploitation of the results of the project, including those from previous EU funded research projects. 4. Development of a sustainable web-based platform and service desk for Advanced Manufacturing stakeholders to allow for easy access to European metrology capabilities and support the wider advanced manufacturing community with metrology-based requirements. 5. Develop a plan for a coordinated and sustainable European metrology infrastructure for Advanced Manufacturing via a European Metrology Network. The project concept followed by the scope and definition of Advanced Manufacturing will be described. The analysis of the current capability of metrology for Advanced Manufacturing and the preliminary concepts for the strategic research agenda will be presented with a focus on dimensional metrology. T2 - CIM 2021 CY - Online meeting DA - 07.09.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA) KW - Stakeholder PY - 2021 AN - OPUS4-54101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Farahbod, L. A1 - Thiede, Tobias A1 - Rule, D. A1 - Haberland, C. A1 - Piegert, S. A1 - Witt, G. T1 - Assessment of SLM-Manufactured Single Struts as Major Elements of Complex Lattice Structures N2 - Additive Manufacturing (AM) enables the unique capability of building highly complex parts with integrated functional design. One particular advantageous design feature is known as lattice structures, which provide opportunities for innovative applications in the high-temperature regime of gas turbines. Generally, manufacturing of these structures is already known to be achievable with AM, however proof of structural integrity and geometrical accuracy is not yet reliably established. In this investigation, a systematic design-follows-complexity approach is utilized to pursue a holistic assessment of Ni based high temperature lattice. As the major element of lattice structures, single struts of different build orientations are investigated at first. This approach includes the application of Computed Tomography (CT), which allows for a non destructive assessment of quality criteria such as porosity and inner geometries as well as the parts’ metrology at a micrometre scale. The applied laboratory CT benefits from high magnification factors around 100 and voxel sizes down to a thousandth of the specimens’ diameter. Preliminary results show a correlation between the inclination angle and the struts’ quality, which indicate a dependency of geometrical accuracy and structural properties to the AM process setup. Consequently, lattice structures require the development of reliable manufacturing to produce dependable characteristics. While there is large potential for use of lattice structures in gas turbine and high temperature applications, the results indicate the strong need for an increased understanding of manufacturing and design as well as of the validation methods for these complex lattice structures. T2 - DDMC CY - Berlin, Germany DA - 14.03.2018 KW - Lattice Structures KW - AM KW - SLM KW - Porosity PY - 2018 AN - OPUS4-44512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Peng, Ru Lin A1 - Mishurova, Tatiana A1 - Thuvander, Mattias A1 - Bruno, Giovanni A1 - Brodin, Håkan A1 - Hryha, Eduard T1 - Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy N2 - Powder Bed Fusion – Laser Beam (PBF-LB) of high γ’ strengthened Ni-base superalloys, such as CM247LC, is of great interest for high temperature applications in gas turbines. However, PBF-LB of CM247LC is challenging due to the high cracking susceptibility during PBF-LB processing (solidification cracking) and heat treatment (strain age cracking, mostly caused by residual stresses). This study focuses on understanding the impact of process parameters on microstructure, residual stresses and solidification cracking. Laser power (P), speed (v) and hatch spacing (h) were varied while the layer thickness (t) was fixed. The melt pool size and shape were found to be key factors in minimizing solidification cracking. Narrower and shallower melt pools, achieved using a low line energy density (LED = P/v ≤ 0.1 J/mm), gave low crack densities (0.7 mm/mm2). A tight hatch spacing (h = 0.03 mm) resulted in reduced lack of fusion porosity. Electron backscatter diffraction investigations revealed that parameters giving finer microstructure with 〈100〉crystallographic texture had low crack densities provided they were processed with a low LED. Atom probe tomography elucidated early stages of spinodal decomposition in the as-built condition, where Cr and Al cluster separately. The extent of spinodal decomposition was found to be affected by the LED and the hatch spacing. Samples with low LED and small hatch spacing showed higher degrees of spinodal decomposition. X-ray diffraction residual stress investigations revealed that the residual stress is proportional to the volumetric energy density (VED = P/(v. h. t)). Although low residual stresses can be achieved by using low VED, there is a high risk of lack of fusion. Hence, other parameters such as modified scan strategy, build plate pre-heating and pulsed laser mode, must be further explored to minimize the residual stresses to reduce the strain age cracking susceptibility. KW - Additive manufacturing KW - X-ray CT KW - Non-weldable superalloy KW - Solidification cracking PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597340 DO - https://doi.org/10.1016/j.mtla.2024.102059 SN - 2589-1529 VL - 34 IS - 102059 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Favres, Georges A1 - O'Connor, Daniel A1 - Balsamo, Alessandro A1 - Evans, Alexander A1 - Castro, Fernando A1 - Przyklenk, Anita A1 - Bosse, Harald T1 - European Metrology Network (EMN) for Advanced Manufacturing N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). By fully utilizing these KETs, advanced and sustainable economies will be created. It is considered that Metrology is a key enabler for the advancement of these KETs. EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network for Advanced Manufacturing. The EMN is made up of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The EMN aims to provide a high-level coordination of European metrology activities for the Advanced Materials and Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider metrology community (including TCs) to provide input for the preparation of a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. This presentation will describe the progress in the development of the SRA by the EMN for Advanced Manufacturing. The metrology challenges identified across the various key industrial sectors, which utilise Advanced Materials and Advanced Manufacturing will be presented. The EMN for Advanced Manufacturing is supported by the project JNP 19NET01 AdvManuNet. T2 - 21st International Metrology Congress, CIM 2023 CY - Lyon (Chassieu), France DA - 07.03.2023 KW - Advanced Materials KW - EMN KW - European Metrology Network for Advanced Manufacturing, Strategic Research Agenda KW - SRA PY - 2023 AN - OPUS4-59208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Schicchi Said, D. A1 - Darvishi Kamachali, Reza A1 - Evans, Alexander A1 - Agudo Jacome, Leonardo A1 - Serrano-Munoz, Itziar T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-470418 DO - https://doi.org/10.25932/publishup-47041 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Evseleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, C. A1 - Bruno, Giovanni T1 - 3D Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of complex structures. The quality of the feedstock material receives increasing attention, as it depicts the first part of the L-PBF process chain. The powder quality control in terms of flowability and powder bed packing density is therefore mandatory. In this work, a workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape for three different powder batches. The polydisperse particle size distribution (PSD) was transformed into a statistically equivalent bidisperse PSD. The ratio of the small and large particles helped to understand the powder particle packing density. While the particle shape had a neglectable influence, the particle size distribution was identified as major contributor for the packing density. T2 - AM- Workshop BAM CY - Online meeting DA - 20.04.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - Powder KW - Particle size distribution KW - Packing density PY - 2021 AN - OPUS4-53477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Farahbod-Sternahl, L. A1 - Serrano Munoz, Itziar A1 - Léonard, F. A1 - Haberland, C. A1 - Bruno, Giovanni T1 - 3D Computed Tomography Quantifies the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured IN625 Lattice Struts N2 - Layer-by-layer additive manufacturing (AM) by means of laser-powder bed Fusion (L-PBF) offers many prospects regarding the design of lattice structures used, for example, in gas turbines. However, defects such as bulk porosity, Surface roughness, and re-entrant features are exacerbated in nonvertical structures, such as tilted struts. The characterization and quantification of these kinds of defects are essential for the correct estimation of fracture and fatigue properties. Herein, cylindrical struts fabricated by L-PBF are investigated by means of X-ray computed tomography (XCT), with the aim of casting light on the dependence of the three kinds of defects (bulk porosity, surface roughness, and re-entrant features) on the build angle. Innovative analysis methods are proposed to correlate shape and position of pores, to determine the angular-resolved Surface roughness, and to quantify the amount of re-entrant surface features, q. A meshing of the XCT surface enables the correlation of q with the classical Surface roughness Pa. This analysis leads to the conclusion that there is a linear correlation between q and Pa. However, it is conjectured that there must be a threshold of surface roughness, below which no re-entrant features can be build. KW - Additive manufacturing KW - Laser powder bed fusion KW - Computed tomography KW - Surface roughness analysis KW - Re-entrant surface feature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534728 DO - https://doi.org/10.1002/adem.202100689 IS - 2100689 SP - 1 EP - 8 PB - Wiley-VCH Verlag AN - OPUS4-53472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, L. A1 - Saliwan Neumann, Romeo A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of ‘lattice structures’ without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Principal stress components KW - Neutron diffraction KW - Lattice structures PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520663 DO - https://doi.org/10.1107/S1600576720015344 SN - 1600-5767 VL - 54 SP - 228 EP - 236 AN - OPUS4-52066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gupta, P. A1 - Karnaushenko, D. D. A1 - Becker, C. A1 - Okur, I. E. A1 - Melzer, M. A1 - Özer, B. A1 - Schmidt, O. G. A1 - Karnaushenko, D. T1 - Large Scale Exchange Coupled Metallic Multilayers by Roll-to-Roll (R2R) Process for Advanced Printed Magnetoelectronics N2 - Till now application of printed magnetoelectronics is hindered by lack of large area exchange coupled metallic multilayers required to produce printable magneto-sensory inks. Large-scale roll-to-roll (R2R) fabrication process is an attractive approach owing to its capabilities for high volume, high throughput, and large area manufacturing. Precise and high performance R2R sputtering technology is developed to fabricate large area giant magnetoresistive (GMR) thin-films stacks that contain 30 metallic bilayers prepared by continuous R2R sputtering of Co and Cu sequential on a hundred meters long polyethylene terephthalate (PET) web. The R2R sputtered Co/Cu multilayer on a 0.2 × 100 m2 PET web exhibits a GMR ratio of ≈40% achieving the largest area exchange coupled room temperature magneto-sensitive system demonstrated to date. The prepared GMR thin-film is converted to magnetosensitive ink that enables printing of magnetic sensors with high performance in a cost-efficient way, which promotes integration with printed electronics. An average GMR ratio of ≈18% is obtained for 370 printed magnetic sensors. The realized precise R2R sputtering approach can also be extended to a wide range of hybrid thin-film material systems opening up a path for new functional inks applied with printing technologies. KW - Printed Electronics KW - Flexible Magnetic Sensors KW - Roll-to-Roll Processing KW - Functional Materials KW - Upscaling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552344 DO - https://doi.org/10.1002/admt.202200190 SN - 2365-709X SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim, Deutschland AN - OPUS4-55234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khimich, M. A. A1 - Prosolov, K. A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Monforte, X. A1 - Teuschl, A. H. A1 - Slezak, P. A1 - Ibragimov, E. A. A1 - Saprykin, A. A. A1 - Kovalevskaya, Z. G. A1 - Dmitriev, A. I. A1 - Bruno, Giovanni A1 - Sharkeev, Y. P. T1 - Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects N2 - The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies. KW - Additive manufacturing KW - Biomaterials KW - Ti-Nb alloy KW - Nanostructured powder KW - Laser methods KW - Powder methods KW - Laser powder bed fusion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525344 DO - https://doi.org/10.3390/nano11051159 VL - 11 IS - 5 SP - 1159 PB - MDPI AN - OPUS4-52534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D A1 - Koptyug, A. A1 - Manabaev, K. A1 - Léonard, Fabien A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Loza, K. A1 - Epple, M. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strength N2 - An ultrasonic vibration post-treatment procedure was suggested for additively manufac-tured lattices. The aim of the present research was to investigate mechanical properties andthe differences in mechanical behavior and fracture modes of Ti6Al4V scaffolds treated withtraditional powder recovery system (PRS) and ultrasound vibration (USV). Scanning electronmicroscopy (SEM) was used to investigate the strut surface and the fracture surface mor-phology. X-ray computed tomography (CT) was employed to evaluate the inner structure,strut dimensions, pore size, as well as the surface morphology of additively manufacturedporous scaffolds. Uniaxial compression tests were conducted to obtain elastic modulus,compressive ultimate strength and yield stress. Finite element analysis was performedfor a body-centered cubic (BCC) element-based model and for CT-based reconstructiondata, as well as for a two-zone scaffold model to evaluate stress distribution during elasticdeformation. The scaffold with PRS post treatment displayed ductile behavior, while USVtreated scaffold displayed fragile behavior. Double barrel formation of PRS treated scaffoldwas observed during deformation. Finite element analysis for the CT-based reconstructionrevealed the strong impact of surface morphology on the stress distribution in comparisonwith BCC cell model because of partially molten metal particles on the surface of struts,which usually remain unstressed. KW - Additive manufacturing KW - Electron beam melting KW - Computed tomography KW - FEM KW - Lattice structures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505960 DO - https://doi.org/10.1016/j.jmrt.2019.12.019 SN - 2238-7854 VL - 9 IS - 2 SP - 1866 EP - 1881 PB - Elsevier B.V. AN - OPUS4-50596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Geometrical features and mechanical properties of the sheet-based gyroid scaffolds with functionally graded porosity manufactured by electron beam melting N2 - Functionally graded porous scaffolds (FGPS) constructed with pores of different size arranged as spatially continuous structure based on sheet-based gyroid with three different scaling factors of 0.05, 0.1 and 0.2 were produced by electron beam powder bed fusion. The pore dimensions of the obtained scaffolds satisfy the values required for optimal bone tissue ingrowth. Agglomerates of residual powder were found inside all structures, which required post-manufacturing treatment. Using X-ray Computed Tomography powder agglomerations were visualized and average wall thickness, wall-to-wall distances, micro- and macro-porosities were evaluated. The initial cleaning by powder recovery system (PRS) was insufficient for complete powder removal. Additional treatment by dry ultrasonic vibration (USV) was applied and was found successful for gyroids with the scaling factors of 0.05 and 0.1. Mechanical properties of the samples, including quasi-elastic gradients and first maximum compressive strengths of the structures before and after USV were evaluated to prove that additional treatment does not produce structural damage. The estimated quasi-elastic gradients for gyroids with different scaling factors lie in a range between 2.5 and 2.9 GPa, while the first maximum compressive strength vary from 52.5 for to 59.8 MPa, compressive offset stress vary from 46.2 for to 53.2 MPa. KW - Additive manufacturing KW - Electron beam KW - Powder bed fusion KW - Triply periodic minimal surfaces KW - Functionally graded porous scaffolds KW - X-ray computed tomography PY - 2023 DO - https://doi.org/10.1016/j.mtcomm.2023.106410 SN - 2352-4928 VL - 35 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-57682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Manabaev, K. A1 - Panin, A. A1 - Sjöström, W. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Different approaches for manufacturing Ti-6Al-4V alloy with triply periodic minimal surface sheet-based structures by electron beam melting N2 - Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones. KW - Electron beam melting KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531595 DO - https://doi.org/10.3390/ma14174912 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Paveleva, A. A1 - Kozadayeva, M. A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Surmenev, R. A1 - Koptyug, A. A1 - Surmeneva, M. T1 - Trapped powder removal from sheet-based porous structures based on triply periodic minimal surfaces fabricated by electron beam powder bed fusion N2 - Electron Beam Powder Bed Fusion-manufactured (E-PBF) porous components with narrow pores or channels and rough walls or struts can be filled with trapped powder after the manufacturing process. Adequate powder removal procedures are required, especially for high-density porous structures. In the present research, sheetbased porous structures with different thicknesses based on triply periodic minimal surfaces fabricated by EPBF were subjected to different post-processing methods, including a traditional powder recovery system for EPBF, chemical etching and ultrasound vibration-assisted powder removal. Wall thickness, internal defects, microstructure and morphology features, powder distribution inside the specimens, mechanical properties and deformation modes were investigated. A powder recovery system could not remove all residual powder from dense structures. In turn, chemical etching was effective for surface morphology changes and subsurface layers elimination but not for powder removal, as it affected the wall thickness, considerably influencing the mechanical properties of the whole structure. The ultrasound vibration method was quite effective for the removal of residual powder from sheet-based TMPS structures and without a severe degradation of mechanical properties. 10.1016/j.msea.2022.144479 Ultrasound vibration also caused grain refinement. KW - Additive manufacturing KW - Residual powder removal KW - Ti6Al4V alloy KW - Electron beam powder bed fusion KW - TPMS structures PY - 2023 DO - https://doi.org/10.1016/j.msea.2022.144479 VL - 862 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-56564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Surmeneva, M. A1 - Koptioug, A. A1 - Evsevleev, Sergei A1 - Léonard, Fabien A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - X-ray computed tomography of multiple-layered scaffolds with controlled gradient cell lattice structures fabricated via additive manufacturing N2 - In this paper we report on the characterization by X-ray computed tomography of calcium phosphate (CaP) and polycaprolactone (PCL) coatings on Ti-6Al-4V alloy scaffolds used as a material for medical implants. The cylindrical scaffold has greater porosity of the inner part than the external part, thus, mimicking trabecular and cortical bone, respectively. The prismatic scaffolds have uniform porosity. Surface of the scaffolds was modified with calcium phosphate (CaP) and polycaprolactone (PCL) by dip-coating to improve biocompatibility and mechanical properties. Computed tomography performed with X-ray and synchrotron radiation revealed the defects of structure and morphology of CaP and PCL coatings showing small platelet-like and spider-web-like structures, respectively.  KW - Mechanical Engineering KW - Maskinteknik PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510763 DO - https://doi.org/10.1088/1742-6596/1145/1/012044 SN - 17426588 VL - 1145 SP - 012044 PB - IOP AN - OPUS4-51076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Surmeneva, M. A1 - Koptioug, A. A1 - Evsevleev, Sergei A1 - Léonard, Fabien A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - X-ray computed tomography of multiple-layered scaffolds with controlled gradient cell lattice structures fabricated via additive manufacturing N2 - In this paper we report on the characterization by X-ray computed tomography of calcium phosphate (CaP) and polycaprolactone (PCL) coatings on Ti-6Al-4V alloy scaffolds used as a material for medical implants. The cylindrical scaffold has greater porosity of the inner part than the external part, thus, mimicking trabecular and cortical bone, respectively. The prismatic scaffolds have uniform porosity. Surface of the scaffolds was modified with calcium phosphate (CaP) and polycaprolactone (PCL) by dip-coating to improve biocompatibility and mechanical properties. Computed tomography performed with X-ray and synchrotron radiation revealed the defects of structure and morphology of CaP and PCL coatings showing small platelet-like and spider-web-like structures, respectively. KW - Additive manufacturing KW - Lattice structure KW - Multiple-layered scaffold KW - Coating KW - Medical implants KW - Computed tomography KW - Polycaprolactone KW - Calcium phosphate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471931 UR - http://stacks.iop.org/1742-6596/1145/i=1/a=012044 DO - https://doi.org/10.1088/1742-6596/1145/1/012044 SN - 1742-6596 VL - 1145 SP - 012044, 1 EP - 7 PB - IOP AN - OPUS4-47193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Wendland, Saskia A1 - Gaal, Mate T1 - Airborne testing of molded polymer compounds N2 - Modern and energy-efficient materials are essential for innovative designs for aerospace and automotive industries. Current technologies for rapid manufacturing such as additive manufacturing and liquid composite moulding by polymer Extrusion allow innovative ways of creating robust and lightweight constructions. Commercially available printing devices often use polylactide (PLA) or acrylonitrile butadiene styrene (ABS) as raw material. Therefore, parameters like the infill ratio, influencing the ability to resist mechanical stress, may have a beneficial impact on the lifetime of components. These manufacturing technologies require a good knowledge about materials and even adapted non-destructive testing technologies and methods. Airborne ultrasonic testing has beneficial advantages for testing those lightweight constructions. It is a contact-free testing method, which does not require a liquid couplant. Therefore, it allows fast test cycles without any unwanted alternations of the material properties due to interactions with any coupling liquid. This contribution deals with the characterisation of printed specimens based on PLA by using airborne ultrasound and presents the current edge of non-destructive testing and evaluation using airborne ultrasonic transducers. The specimens, manufactured by polymer extrusion, are printed as thin plates. The infill ratio, as well as the material thickness, were varied to model density imperfections with different geometric shapes and properties. For better understanding of the limits of airborne ultrasonic testing in transmission, we compared own-developed transducers based on different physical principles: on ferroelectrets, on the thermoacoustic effect, as well as a new type of transducers based on gas discharges. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 24.10.2018 KW - Air-coupled ultrasonic testing KW - Polymer KW - Plasma acoustics KW - Gas discharges KW - Atmospheric pressure plasma PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465609 VL - 168 SP - Th.6.C.1, 1 EP - 7 AN - OPUS4-46560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -