TY - GEN A1 - Andrés Arcones, Daniel A1 - Diercks, Philipp A1 - Robens-Radermacher, Annika A1 - Rosenbusch, Sjard Mathis A1 - Tamsen, Erik A1 - Tyagi, Divyansh A1 - Unger, Jörg F. T1 - FenicsXConcrete N2 - FenicsXConcrete is a Python package for the simulation of mechanical problems. The general PDE solving software FEniCSx is extended with classes describing experimental setups, mechanical problems, thermo-mechanical problems, additive manufacturing and sensors. KW - FEM KW - Fenics KW - Concrete modelling PY - 2023 UR - https://github.com/BAMresearch/FenicsXConcrete DO - https://doi.org/10.5281/zenodo.7780757 PB - Zenodo CY - Geneva AN - OPUS4-59121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strobl, Dominic A1 - Robens-Radermacher, Annika A1 - Ghnatios, C. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Unger, Jörg F. T1 - Real-time Bead-on-Plate weld Simulation for Wire Arc Additive Manufacturing using Reduced Order modelling coupled with stochastic model Calibration N2 - Numerical simulations are essential in predicting the behavior of systems in many engineering fields and industrial sectors. The development of accurate virtual representations of actual physical products or processes (also known as digital twins) allows huge savings in cost and resources. In fact, digital twins would allow reducing the number of real, physical prototypes, tests, and experiments, thus also increasing the sustainability of production processes and products’ lifetime. Standard numerical methods fail in providing real time simulations, especially for complex processes such as additive manufacturing applications. This work aims to use a reduced order model for efficient wire arc additive manufacturing simulations, calibrations and real-time process control. Model reduction, e.g. the proper generalized decomposition [1,2] method, is a popular concept to decrease the computational effort. A new mapping approach [3] was applied to simulate a moving heat source with the proper generalized decomposition. Using this procedure even complex models can be simulated in real-time. The physical model is later on calibrated with the use of a stochastic model updating process and the reduced order model, leading to an optimized real-time simulation. In this contribution, a proper generalized decomposition model for a bead-on-plate wire arc additive manufacturing is presented. It is also coupled with a stochastic model updating process identifying the heat source characteristics as well as the boundary conditions of the transient thermal problem, whereas the heat source shape is simulated using a Goldak heat source T2 - 15th World Congress on Computational Mechanics (WCCM-XV) CY - Yokohama, Japan DA - 31.07.2022 KW - Wire arc additive manufacturing KW - Reduced order modelling KW - Model calibration PY - 2022 AN - OPUS4-55576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ulbricht, Alexander A1 - Gardei, André T1 - Classic Materials Testing in the Light of CT N2 - Currently, mandatory requirements and recommendations for the detection of irregularities in laser beam welded joints are based on classic micrographs as set out in the standard ISO 13919-1:2019. Compared to classic micrographs, computed tomography enables a non-destructive, three-dimensional and material-independent mode of operation, which delivers much more profound results. Even in building material testing, methods with limited informative value can be checked and supplemented by CT examinations. T2 - 13th International Conference on Industrial Computed Tomography (iCT2024) CY - Wels, Austria DA - 06.02.2024 KW - Computed Tomography KW - Additive Manufacturing KW - Machine-Learning Segmentation KW - Air Void System PY - 2024 AN - OPUS4-59568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, J.-C. A1 - Fateri, M. A1 - Schubert, T. A1 - de Peindray d’Ambelle, L. A1 - Simon, Sebastian A1 - Gluth, Gregor A1 - Günster, Jens A1 - Zocca, Andrea T1 - Material aspects of sintering of EAC-1A lunar regolith simulant JF - Scientific Reports N2 - Future lunar exploration will be based on in-situ resource utilization (ISRU) techniques. The most abundant raw material on the Moon is lunar regolith, which, however, is very scarce on Earth, making the study of simulants a necessity. The objective of this study is to characterize and investigate the sintering behavior of EAC-1A lunar regolith simulant. The characterization of the simulant included the determination of the phase assemblage, characteristic temperatures determination and water content analysis. The results are discussed in the context of sintering experiments of EAC-1A simulant, which showed that the material can be sintered to a relative density close to 90%, but only within a very narrow range of temperatures (20–30 °C). Sintering experiments were performed for sieved and unsieved, as well as for dried and non-dried specimens of EAC-1A. In addition, an analysis of the densification and mechanical properties of the sintered specimens was done. The sintering experiments at different temperatures showed that the finest fraction of sieved simulant can reach a higher maximum sintering temperature, and consequently a higher densification and biaxial strength. The non-dried powder exhibited higher densification and biaxial strength after sintering compared to the dried specimen. This difference was explained with a higher green density of the non-dried powder during pressing, rather than due to an actual influence on the sintering mechanism. Nevertheless, drying the powder prior to sintering is important to avoid the overestimation of the strength of specimens to be fabricated on the Moon. KW - Lunar regolith KW - Ceramics KW - Microstructure KW - Sintering KW - Softening temperature PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592668 DO - https://doi.org/10.1038/s41598-023-50391-y SN - 2045-2322 VL - 13 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-59266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silvestro, L. A1 - Ruviaro, A. S. A1 - Lima, G. A1 - Durlo Tambara, Luis Urbano A1 - Feys, D. A1 - Kirchheim, A. P. T1 - Rotational rheometry test of Portland cement-based materials - A systematic literature review JF - Construction and Building Materials N2 - This study systematically reviews 62 papers on the use of rotational rheometry to assess the fresh state behavior of Portland cement-based materials. The research highlights the wide variation in test methods and aims to provide a comprehensive overview. Findings reveal that 50.0% of studies employed vane geometry, despite its limitations in providing transformation equations. Regarding dynamic shearing tests, 67.0% followed a consensus using a pre-shearing step and a step-wise routine with stabilization times ≥ 10 s. While the Bingham model is commonly used, the study emphasizes the importance of considering shear-thinning behavior in cementitious materials. Models like Herschel-Bulkley and modified Bingham may be more appropriate. This review offers insights into testing conditions for rotational rheometry of cementitious materials, serving as a foundation for future research in the field. KW - Review KW - Rheology KW - Rheometry KW - Rotational KW - Cement PY - 2024 DO - https://doi.org/10.1016/j.conbuildmat.2024.136667 SN - 0950-0618 VL - 432 SP - 1 EP - 14 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-60075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -