TY - JOUR A1 - Pacheco, V. A1 - Marattukalam, J. J. A1 - Karlsson, D. A1 - Dessieux, L. A1 - Tran, K. V. A1 - Beran, P. A1 - Manke, I. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Sahlberg, M. A1 - Woracek, R. T1 - On the relationship between laser scan strategy, texture variations and hidden nucleation sites for failure in laser powder-bed fusion N2 - While laser powder-bed fusion has overcome some of the design constraints of conventional manufacturing methods, it requires careful selection of process parameters and scan strategies to obtain favorable properties. Here we show that even simple scan strategies, complex ones being inevitable when printing intricate designs, can inadvertently produce local alterations of the microstructure and preferential grain orientation over small areas – which easily remain unnoticed across the macroscale. We describe how a combined usage of neutron imaging and electron backscatter diffraction can reveal these localized variations and explain their origin within cm-sized parts. We explain the observed contrast variations by linking the neutron images to simulated data, pole figures and EBSD, providing an invaluable reference for future studies and showing that presumably minor changes of the scan strategy can have detrimental effects on the mechanical properties. In-situ tensile tests reveal that fracture occurs in a region that was re-melted during the building process. KW - Laser powder-bed fusion KW - Texture KW - Preferential orientation KW - Diffraction contrast neutron imaging KW - Bragg-edge PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568054 DO - https://doi.org/10.1016/j.mtla.2022.101614 VL - 26 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-56805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Lei A1 - Magdysyuk, Oxana V. A1 - Jiang, Fuqing A1 - Wang, Yiqiang A1 - Evans, Alexander A1 - Kabra, Saurabh A1 - Cai, Biao T1 - Mechanical performance and deformation mechanisms at cryogenic temperatures of 316L stainless steel processed by laser powder bed fusion: In situ neutron diffraction N2 - Manufacturing austenitic stainless steels (ASSs) using additive manufacturing is of great interest for cryogenic applications. Here, the mechanical and microstructural responses of a 316L ASS built by laser powder bed fusion were revealed by performing in situ neutron diffraction tensile tests at the low-temperature range (from 373 to 10 K). The stacking fault energy almost linearly decreased from 29.2 ± 3.1 mJm⁻² at 373 K to 7.5 ± 1.7 mJm⁻² at 10 K, with a slope of 0.06 mJm⁻²K⁻¹, leading to the transition of the dominant deformation mechanism from strain-induced twinning to martensite formation. As a result, excellent combinations of strength and ductility were achieved at the low-temperature range. KW - Condensed Matter Physics KW - General Materials Science KW - Mechanics of Materials KW - Metals and Alloys KW - Mechanical Engineering PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2022.114806 SN - 1359-6462 VL - 218 SP - 1 EP - 7 PB - Elsevier BV CY - Amsterdam AN - OPUS4-59317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Manufacturing a safer world: Diffraction based residual stress analysis for metal additive manufacturing N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, with associated potential gains in performance and efficiency. However, high magnitude residual stresses (RS) are often a product of the rapid thermal cycles typical of the layerwise process. Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterisation of these RS is essential for safety related engineering application and supports the development of reliable numerical models. Diffraction-based methods for RS analysis using neutrons and high energy X-rays enable non-destructive spatially resolved characterisation of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys as a function of process parameters. In addition, the challenges posed by the textured and hierarchical microstructures of LPBF materials on diffraction-based RS analysis in AM materials will be discussed. This will include the question of the d0 reference lattice spacing and the appropriate choice of the diffraction elastic constants (DECs) to calculate the level of RS in LPBF manufactured alloys. T2 - 11th INternational Conference on Residual Stress (ICRS11) CY - Online meeting DA - 28.03.2021 KW - Residual stress analysis KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2022 AN - OPUS4-54676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Altenburg, Simon T1 - Porosity prediction in metal based additive manufacturing utilizing in situ thermography N2 - Quality assessment of components produced by metal based additive manufacturing (AM) technologies such as laser powder bed fusion is rising in importance due to the increased use of AM in industrial production. Here, the presence of internal porosity was identified as a limiting factor for the final component quality. The utilization of thermography as an in-situ monitoring technique allows the determination of the part’s thermal history which was found to be connected to the porosity formation [1]. Combining the local thermal information derived from thermography with the porosity information obtained by x-ray micro computed tomography, machine learning algorithms can be utilized to predict the porosity distribution in the part. In this study, a first approach for the prediction of keyhole porosity in a cylindric specimen from AISI 316L stainless steel is presented. It is based on data augmentation using the “SmoteR” algorithm [2] to cure the dataset imbalance and a 1-dimensional convolutional neural network. [1] C.S. Lough et al., Local prediction of Laser Powder Bed Fusion porosity by short-wave infrared thermal feature porosity probability maps. Journal of Materials Processing Technology, 302, p. 117473 (2022) https://dx.doi.org/10.1016/j.imatprotec.2021.117473 [2] L. Torgo et al., SMOTE for Regression. Progress in Artificial Intelligence, Chapter 33, p. 378-289 (2013) https://dx.doi.org/10.1007/978-3-642-40669-0_33 T2 - KI-Tag Arbeitskreis Chemometrik & Qualitätssicherung - Chemometrics meets Artificial Intelligence CY - Berlin, Germany DA - 01.04.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - Defect Prediction KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-54621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina A1 - Altenburg, Simon A1 - Metz, Christian A1 - Breese, Philipp Peter A1 - Oster, Simon A1 - Maierhofer, Christiane T1 - Two approaches for multi measurand in-situ monitoring of the L-PBF process – bicolor- and RGB-optical tomography N2 - Since metal additive manufacturing (AM) becomes more and more established in industry, also the cost pressure for AM components increases. One big cost factor is the quality control of the manufactured components. Reliable in-process monitoring systems are a promising route to lower scrap rates and enhance trust in the component and process quality. The focus of this contribution is the presentation and comparison of two optical tomography based multi measurand in-situ monitoring approaches for the L-PBF process: the bicolor- and the RGB-optical tomography. The classical optical tomography (OT) is one of the most common commercial in-situ monitoring techniques in industrial L-PBF machines. In the OT spatial resolved layer-images of the L-PBF process are taken from an off-axis position in one near infrared wavelength window. In addition to the explanatory powers classical OT, both here presented approaches enable the determination of the maximum surface temperature. In contrast to thermography that may also yield maximum temperature information, the needed equipment is significantly cheaper and offers a higher spatial resolution. Both approaches are implemented at a new in-house developed L-PBF system (Sensor-based additive manufacturing machine - SAMMIE). SAMMIE is specifically designed for the development and characterization of in-situ monitoring systems and is introduced as well. T2 - ICAM2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring KW - Optical tomography PY - 2022 AN - OPUS4-56594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This study presents a thorough characterization of the creep properties of austenitic stainless steel 316L produced by laser powder bed fusion (LPBF 316L) contributing to the sparse available data to date. Experimental results (mechanical tests, microscopy, X-ray computed tomography) concerning the creep deformation and damage mechanisms are presented and discussed. The tested LPBF material exhibits a low defect population, which allows for the isolation and improved understanding of the effect of other typical aspects of an LPBF microstructure on the creep behavior. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant of 316L was also tested. To characterize the creep properties, hot tensile tests and constant force creep tests at 600 °C and 650 °C are performed. The creep stress exponents of the LPBF material are smaller than that of the conventional variant. The primary and secondary creep stages and the times to rupture of the LPBF material are shorter than the hot rolled 316L. Overall the creep damage is more extensive in the LPBF material. The creep damage of the LPBF material is overall mainly intergranular. It is presumably caused and accelerated by both the appearance of precipitates at the grain boundaries and the unfavorable orientation of the grain boundaries. Neither the melt pool boundaries nor entrapped gas pores show a significant influence on the creep damage mechanism. KW - 316L KW - Laser Powder Bed Fusion (LPBF) KW - Creep behavior KW - Additive Manufacturing KW - AGIL PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539373 DO - https://doi.org/10.1016/j.msea.2021.142223 SN - 0921-5093 VL - 830 SP - 142223 PB - Elsevier B.V. AN - OPUS4-53937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Pelkner, Matthias T1 - Process monitoring in metal AM @ BAM - The project ProMoAM N2 - Results of the project ProMoAM (Process monitoring in additive manufacturing) presented. Results from in-situ eddy current testing, optical emission spectroscopy, thermography, optical tomography as well as particle and gas emission spectroscopy are summarized and correlated to results from computed tomography for future in-situ defect detection. T2 - 3rd Meeting of WG6 (NDT in AM) of the EFNDT CY - Online meeting DA - 15.03.2022 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2022 AN - OPUS4-54484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Maierhofer, Christiane T1 - Towards hyperspectral in-situ temperature measurement in metal additive manufacturing N2 - The industrial use of additive manufacturing for the production of metallic parts with high geometrical complexity and lot sizes close to one is rapidly increasing as a result of mass individualisation and applied safety relevant constructions. However, due to the high complexity of the production process, it is not yet fully understood and controlled, especially for changing (lot size one) part geometries. Due to the thermal nature of the Laser-powder bed fusion (L-PBF) process – where parts are built up layer-wise by melting metal powder via laser - the properties of the produced part are strongly governed by its thermal history. Thus, a promising route for process monitoring is the use of thermography. However, the reconstruction of temperature information from thermographic data relies on the knowledge of the surface emissivity at each position on the part. Since the emissivity is strongly changing during the process due to phase changes, great temperature gradients, possible oxidation, and other potential influencing factors, the extraction of real temperature data from thermographic images is challenging. While the temperature development in and around the melt pool, where melting and solidification occur is most important for the development of the part properties. Also, the emissivity changes are most severe in this area, rendering the temperature deduction most challenging. A possible route to overcome the entanglement of temperature and emissivity in the thermal radiation is the use of hyperspectral imaging in combination with temperature emissivity separation (TES) algorithms. As a first step towards the combined temperature and emissivity determination in the L-PBF process, here, we use a hyperspectral line camera system operating in the short-wave infrared region (0.9 µm to 1.7 µm) to measure the spectral radiance emitted. In this setup, the melt pool of the L-PBF process migrates through the camera’s 1D field of view, so that the radiation intensities are recorded simultaneously for multiple different wavelength ranges in a spatially resolved manner. At sufficiently high acquisition frame rate, an effective melt pool image can be reconstructed. Using the grey body approximation (emissivity is independent of the wavelength), a first, simple TES is performed, and the resulting emissivity and temperature values are compared to literature values. Subsequent work will include reference measurements of the spectral emissivity in different states allowing its analytical parametrisation as well as the adaption and optimisation of the TES algorithms. An illustration of the proposed method is shown in Fig.1. The investigated method will allow to gain a deeper understanding of the L-PBF process, e.g., by quantitative validation of simulation results. Additionally, the results will provide a data basis for the development of less complex and cheaper sensor technologies for L-PBF in-process monitoring (or for related process), e.g., by using machine learning. T2 - 21st International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Additive manufacturing KW - L-PBF KW - Hyperspectral PY - 2022 AN - OPUS4-55152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Frisch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction in laser powder bed fusion based on thermographic features utilizing convolutional neural networks N2 - The appearance of irregularities such as keyhole porosity is a major challenge for the production of metal parts by laser powder bed fusion (PBF-LB/M). The utilization of thermographic in-situ monitoring is a promising approach to extract the thermal history which is closely related to the formation of irregularities. In this study, we investigate the utilization of convolutional neural networks to predict keyhole porosity based on thermographic features. Here, the porosity information calculated from an x-ray micro computed tomography scan is used as reference. Feature engineering is performed to enable the model to learn the complex physical characteristics of the porosity formation. The model is examined with regard to the choice of hyperparameters, the significance of thermal features and characteristics of the data acquisition. Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - GIMC SIMAI YOUNG 2022 CY - Pavia, Italy DA - 29.09.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction on the Base of Thermographic features in Laser Powder Bed Fusion Utilizing Machine Learning Algorithms N2 - Avoiding the formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The use of in-situ monitoring by thermographic cameras is a promising approach to detect defects, however the data is hard to analyze by conventional algorithms. Therefore, we investigate the use of Machine Learning (ML) in this study, as it is a suitable tool to model complex processes with many influencing factors. A ML model for defect prediction is created based on features extracted from process thermograms. The porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan is used as reference. Physical characteristics of the keyhole pore formation are incorporated into the model to increase the prediction accuracy. Based on the prediction result, the quality of the input data is inferred and future demands on in-situ monitoring of LPBF processes are derived. T2 - Additive Manufacturing Benchmarks 2022 CY - Bethesda, MA, USA DA - 14.08.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Machine Learning KW - Defect prediction PY - 2022 AN - OPUS4-55591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Altenburg, Simon T1 - Machine Learning based defect detection in Laser Powder Bed Fusion utilizing thermographic feature data N2 - The formation of irregularities such as keyhole porosity pose a major challenge to the manufacturing of metal parts by laser powder bed fusion (PBF-LB/M). In-situ thermography as a process monitoring technique shows promising potential in this manner since it is able to extract the thermal history of the part which is closely related to the formation of irregularities. In this study, we investigate the utilization of machine learning algorithms to detect keyhole porosity on the base of thermographic features. Here, as a referential technique, x-ray micro computed tomography is utilized to determine the part's porosity. An enhanced preprocessing workflow inspired by the physics of the keyhole irregularity formation is presented in combination with a customized model architecture. Furthermore, experiments were performed to clarify the role of important parameters of the preprocessing workflow for the task of defect detection . Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - International Conference on NDE 4.0 CY - Berlin, Germany DA - 24.10.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Capek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Texture Dependent Micromechanical Anisotropy of Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing methods such as laser powder bed fusion (LPBF) allow geometrically complex parts to be manufactured within a single step. However, as an aftereffect of the localized heat input, the rapid cooling rates are the origin of the large residual stress (RS) retained in as-manufactured parts. With a view on the microstructure, the rapid directional cooling leads to a cellular solidification mode which is accompanied by columnar grown grains possessing crystallographic texture. The solidification conditions can be controlled by the processing parameters and the scanning strategy. Thus, the process allows one to tailor the microstructure and the texture to the specific needs. Yet, such microstructures are not only the origin of the mechanical anisotropy but also pose metrological challenges for the diffraction-based RS determination. In that context the micromechanical elastic anisotropy plays an important role: it translates the measured microscopic strain to macroscopic stress. Therefore, it is of uttermost importance to understand the influence of the hierarchical microstructures and the texture on the elastic anisotropy of LPBF manufactured materials. This study reveals the influence of the build orientation and the texture on the micro-mechanical anisotropy of as-built Inconel 718. Through variations of the build orientation and the scanning strategy, we manufactured specimens possessing [001]/[011]-, [001]-, and [011]/[111]-type textures. The resulting microstructures lead to differences in the macroscopic mechanical properties. Even further, tensile in-situ loading experiments during neutron diffraction measurements along the different texture components revealed differences in the microstrain response of multiple crystal lattice planes. In particular, the load partitioning and the residual strain accumulation among the [011]/[111] textured specimen displayed distinct differences measured up to a macroscopic strain of 10 %. However, the behavior of the specimens possessing [001]/[011]-and [001]-type texture was only minorly affected. The consequences on the metrology of RS analysis by diffraction-based methods are discussed. T2 - International Conference on Additive Manufacturing ICAM 2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Laser powder bed fusion KW - Neutron diffraction KW - Electron backscatter diffraction KW - Mechanical behavior PY - 2022 AN - OPUS4-56376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[111]-type textures along their loading direction. In addition to changes in the Young’s moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[111]-type texture. However, the relative behavior of the specimens possessing an [001]/[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. KW - Laser powder bed fusion KW - Additive manufacturing KW - Electron backscatter diffraction KW - Tensile testing KW - Diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555840 DO - https://doi.org/10.1007/s10853-022-07499-9 SN - 1573-4803 VL - 2022 IS - 57 SP - 15036 EP - 15058 PB - Springer Science + Business Media B.V. CY - Dordrecht AN - OPUS4-55584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Bruno, Giovanni A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion N2 - The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction. KW - Selective laser melting (SLM) KW - Laser powder bed fusion (L-PBF) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - X-ray computed tomography (XCT) KW - Defect detection KW - Image registration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549412 DO - https://doi.org/10.3390/met12060947 VL - 12 IS - 6 SP - 1 EP - 21 PB - MDPI AN - OPUS4-54941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Breese, Philipp Peter A1 - Metz, C. A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - In-situ monitoring of the Laser Powder Bed Fusion build process via bi- chromatic optical tomography N2 - As metal additive manufacturing (AM) is entering industrial serial production of safety relevant components, the need for reliable process qualification is growing continuously. Especially in strictly regulated industries, such as aviation, the use of AM is strongly dependent on ensuring consistent quality of components. Because of its numerous influencing factors, up to now, the metal AM process is not fully controllable. Today, expensive part qualification processes for each single component are common in industry. This contribution focusses on bi-chromatic optical tomography as a new approach for AM in-situ quality control. In contrast to classical optical tomography, the emitted process radiation is monitored simultaneously with two temperature calibrated cameras at two separate wavelength bands. This approach allows one to estimate the local maximum temperatures during the manufacturing process, thus increases the comparability of monitoring data of different processes. A new process information level at low investment cost is reachable, compared to, e.g., infrared thermography. T2 - LANE 2022 CY - Fürth, Germany DA - 04.08.2022 KW - Optical tomography KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560270 DO - https://doi.org/10.1016/j.procir.2022.08.035 SN - 2212-8271 VL - 111 SP - 340 EP - 344 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Luzin, V. A1 - Bruno, Giovanni T1 - Fundamentals of diffraction-based residual stress and texture analysis of PBF-LB Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer wise additive manufacturing process which provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative strain-free reference for the material of interest. In this presentation advancements in the field of diffraction-based residual stress analysis of L-PBF Inconel 718 will be presented. The choice of an appropriate set of diffraction-elastic constants depending on the underlying microstructure will be described. T2 - MLZ User Meeting 2022 CY - Munich, Germany DA - 08.12.2022 KW - Diffraction KW - Residual Stress KW - Microstructure KW - Texture KW - Mechanical behavior PY - 2022 AN - OPUS4-56804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -