TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis for AM Materials N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Integrated Additive Manufacturing center, Politecnico Torino CY - Turin, Italy DA - 14.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction PY - 2023 AN - OPUS4-57047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing N2 - Synchrotron X-ray computed tomography (SXCT) at BAMline has been paired with in-situ tensile loading to monitor damage evolution in LPBF Metal Matrix Composite (MMC) 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing of the material leads formation to different categories of Zr-rich inclusions, precipitates and defects. In-situ SXCT test disclosed the critical role of the pre-cracks in the reinforcement phases in the failure mechanisms of LPBF MMC. The damage was initiated from lack-of-fusion defects and cracks propagated through coalescence with other defects. T2 - HZB Uer Meeting 2023 CY - Berlin, Germany DA - 22.06.23 KW - Additive manufacturing KW - BAMline KW - Synchrotron X-ray computed tomography KW - in-situ PY - 2023 AN - OPUS4-57801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - In-situ hot isostatic pressing combined with x-ray imaging and diffraction of laser powder bed fusion ti-6al-4v N2 - Hot Isostatic Pressing (HIP) is often introduced to tackle the porosity issue in additively manufactured (AM) materials. For instance, HIP post-processing is recommended to improve fatigue resistance of Laser powder bed fusion (PBF-LB) manufactured parts [1, 2]. Even though HIP cannot completely remove porosity, it significantly decreases the defect population and its average size below the critical threshold value leading to early crack initiation. In the present study, in-situ investigation of HIP procedure of PBF-LB Ti-6Al-4V parts was carried out to gain further insights into the densification mechanism occurring during HIP. The in-situ observations at high pressure and high temperature are uniquely possible at the PSICHE beamline of the Soleil synchrotron (France), thanks to the Ultrafast Tomography on a Paris-Edinburgh Cell (UToPEC) and the combination of the fast phase-contrast tomography and energy-dispersive diffraction [3, 4]. A detailed methodology was developed to ensure that the correct pressure and temperature were maintained during the experiments. The results allowed an estimation of the global dentification rate during HIP of PBF-LB Ti-Al-4V material, as well as a detailed quantitative characterization of the influence of pore size and shape on the densification process, thereby understanding the effectiveness of HIP process on different pore categories. After 20 mins, 75% of porosity can be considered as closed or has size below the resolution of the XCT reconstruction. We also observed that the smallest defects showed higher densification rate, while the defect shape did not have significant effect on such rate. The current development of in-situ HIP experiment allows experimental quantification and validation of the simulation work. Ultimately it paves the road to tailoring the HIP procedure for different materials depending on the porosity and microstructure. T2 - AAMS 2023 CY - Madrid, Spain DA - 26.09.23 KW - Additive manufacturing KW - HIP KW - X-ray computed tomography PY - 2023 AN - OPUS4-58482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Applications of x-ray computed tomography in material science N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field material characterization by X-ray imaging is presented. The principle of X-ray Computed Tomography (XCT) is explained. The multiple examples of application of quantitative analysis by XCT are reported, such as additive manufacturing, Li-ion battery, concrete research. T2 - Lecture for PhD students at Politecnico di Torino CY - Turin, Italy DA - 14.03.2024 KW - X-ray computed tomography KW - Additive manufacturing PY - 2024 AN - OPUS4-59689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D Imaging and residual stress analysis of additively manufactured materials N2 - The focus of the presentation focus will be on 3D imaging by means of X-ray Computed Tomography (XCT) at the lab and at synchrotron, and the non-destructive residual stress (RS) characterization by diffraction of additively manufactured (AM) materials in BAM (Berlin, Germany). The manufacturing defects and high RS are inherent of AM techniques and affect structural integrity of the components. Using XCT the defects size and shape distribution as well as geometrical deviations can be characterized, allowing the further optimization of the manufacturing process. Diffraction-based RS analysis methods using neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk RS in complex components and track their changes following applied thermal or mechanical loads. T2 - The International Symposium on Nondestructive Characterization of Materials 2023 CY - Zurich, Switzerland DA - 15.08.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti-6Al-4V N2 - Subsurface residual stresses (RS) were investigated in Ti-6Al-4V cuboid samples by means of X-ray synchrotron diffraction. The samples were manufactured by laser powder bed fusion (LPBF) applying different processing parameters, not commonly considered in open literature, in order to assess their influence on RS state. While investigating the effect of process parameters used for the calculation of volumetric energy density (such as laser velocity, laser power and hatch distance), we observed that an increase of energy density led to a decrease of RS, although not to the same extent for every parameter variation. Additionally, the effect of support structure, sample roughness and LPBF machine effects potentially coming from Ar flow were studied. We observed no influence of support structure on subsurface RS while the orientation with respect to Ar flow showed to have an impact on RS.We conclude recommending monitoring such parameters to improve part reliability and reproducibility. KW - Additive manufacturing KW - Synchrotron X-ray diffraction KW - Residual stress KW - Ti-6Al-4V PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474281 DO - https://doi.org/10.3390/met9020261 SN - 2075-4701 VL - 9 IS - 2 SP - 261, 1 EP - 13 PB - MDPI AN - OPUS4-47428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - New aspects about the search for the most relevant parameters optimizing SLM materials N2 - While the volumetric energy density is commonly used to qualify a process parameter set, and to quantify its influence on the microstructure and performance of additively manufactured (AM) materials and components, it has been already shown that this description is by no means exhaustive. In this work, new aspects of the optimization of the selective laser melting process are investigated for AM Ti-6Al-4V. We focus on the amount of near-surface residual stress (RS), often blamed for the failure of components, and on the porosity characteristics (amount and spatial distribution). First, using synchrotron x-ray diffraction we show that higher RS in the subsurface region is generated if a lower energy density is used. Second, we show that laser de-focusing and sample positioning inside the build chamber also play an eminent role, and we quantify this influence. In parallel, using X-ray Computed Tomography, we observe that porosity is mainly concentrated in the contour region, except in the case where the laser speed is small. The low values of porosity (less than 1%) do not influence RS. KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Computed tomography PY - 2019 DO - https://doi.org/10.1016/j.addma.2018.11.023 SN - 2214-8604 VL - 25 SP - 325 EP - 334 PB - Elsevier AN - OPUS4-46737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Haubrich, J. A1 - Avila, Luis A1 - Schoenstein, F. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature N2 - Manufacturing defects, high residual stress (RS), and microstructures affect the structural integrity of laser powder bed fusion (LPBF) Ti-6Al-4V. In this study, the individual effect of these factors on fatigue performance at elevated temperature (300 °C) was evaluated. Material in as-built condition and subjected to post-processing, including two heat treatments and hot isostatic pressing, was investigated. It was found that in the absence of tensile RS, the fatigue life at elevated temperature is primary controlled by the defects; and densification has a much stronger effect than the considered heat treatments on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance KW - Computed tomography PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106239 SN - 0142-1123 VL - 148 SP - 106239 PB - Elsevier Ltd. AN - OPUS4-52369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Bruno, Giovanni A1 - Requena, Guillermo A1 - Haubrich, Jan T1 - Subsurface residual stress analysis in Ti-6Al-4V additive manufactured parts by synchrotron x-ray diffraction N2 - Synchrotron X-ray diffraction is a powerful non-destructive technique for the analysis of the material stress-state. High cooling rates and heterogeneous temperature distributions during additive manufacturing lead to high residual stresses. These high residual stresses play a crucial role in the ability to achieve complex geometries with accuracy since they can promote distortion of parts during manufacturing. Furthermore, residual stresses are critical for the mechanical performance of parts in terms of durability and safety. In the present study, Ti-6Al-4V bridge-like specimens were manufactured additively by selective laser melting (SLM) under different laser scanning speed conditions in order to compare the effect of process energy density on the residual stress state. Subsurface residual stress analysis was conducted by means of synchrotron X-ray diffraction in energy dispersive mode for three conditions: as-built on base plate, released from base plate, and after heat treatment on the base plate. The quantitative residual stress characterization shows a correlation with the qualitative bridge curvature method. Computed tomography (CT) was carried out to ensure that no stress relief took place owing to the presence of porosity. CT allows obtaining spatial and size pores distribution which helps in optimization of the SLM process. High tensile residual stresses were found at the lateral surface for samples in the as-built conditions. We observed that higher laser energy density during fabrication leads to lower residual stresses. Samples in released condition showed redistribution of the stresses due to distortion. T2 - 12th ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Synchrotron X-ray diffraction KW - Ti-6Al-4V PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0213-2018-File001.pdf SP - 1 EP - 8 AN - OPUS4-45217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Bruno, Giovanni T1 - BAM activities in material characterization by advanced X-ray imaging N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). Also, two successful research project in collaboration with CAM2, Sweden are presented. T2 - CAM2 Annual Meeting CY - Gothenburg, Sweden DA - 25.10.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. T1 - Determination of macroscopic stress from diffraction experiments: A critical discussion N2 - The paper is motivated by some inconsistencies and contradictions present in the literature on the calculation of the so-called diffraction elastic constants. In an attempt at unifying the views that the two communities of Materials Science and Mechanics of Materials have on the subject, we revisit and define the terminology used in the field. We also clarify the limitations of the commonly used approaches and Show that a unified methodology is also applicable to textured materials with a nearly arbitrary grain shape. We finally compare the predictions based on this methodology with experimental data obtained by in situ synchrotron radiation diffraction on additively manufactured Ti-6Al4V alloy. We show that (a) the transverse isotropy of the material yields good agreement between the best-fit isotropy approximation (equivalent to the classic Kröner’s model) and the experimental data and (b) the use of a general framework allows the calculation of all components of the tensor of diffraction elastic constants, which are not easily measurable by diffraction methods. This allows us to extend the current state-of-the-art with a predictive tool. KW - Additive manufacturing KW - X-ray diffraction KW - Elastic constants KW - Stress concentration tensor PY - 2020 DO - https://doi.org/10.1063/5.0009101 VL - 128 IS - 2 SP - 025103 PB - AIP Publishing AN - OPUS4-50993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Artzt, K. A1 - Haubrich, J. A1 - Sevostianov, I. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Micromechanical behavior of annealed Ti-6Al-4V produced by Laser Powder Bed Fusion N2 - The micromechanical behavior of an annealed Ti-6Al-4V material produced by Laser Powder Bed Fusion was characterized by means of in-situ synchrotron X-ray diffraction during a tensile test. The lattice strain evolution was obtained parallel and transversal to the loading direction. The elastic constants were determined and compared with the conventionally manufactured alloy. In the plastic regime, a lower plastic anisotropy exhibited by the lattice planes was observed along the load axis (parallel to the building direction) than in the transverse direction. Also, the load transfer from α to β phase was observed, increasing global ductility of the material. The material seems to accumulate a significant amount of intergranular strain in the transverse direction. KW - Additive manufacturing KW - Ti-6Al-4V KW - Anisotropy KW - Intergranular strain KW - Synchrotron X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547406 DO - https://doi.org/10.1080/26889277.2022.2063763 VL - 2 IS - 1 SP - 186 EP - 201 PB - Taylor & Francis AN - OPUS4-54740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, B. A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryha, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - The availability of high-performance Al alloys in AM is limited due to difficulties in printability, requiring both the development of synergetic material and AM process to mitigate problems such as solidification cracking during laser powder bed fusion (LPBF). The goal of this work was to investigate the failure mechanism in a LPBF 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing leads to different categories of Zr-rich inclusions, precipitates and defects. T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 11.09.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - MMC PY - 2022 AN - OPUS4-56110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Piault, Pierre A1 - King, Andrew A1 - Henry, Laura A1 - Bruno, Giovanni T1 - Understanding the hot isostatic pressing efectiveness of laser powder bed fusion Ti‑6Al‑4V by in‑situ X‑ray imaging and difraction experiments N2 - In the present study, in-situ observation of Hot Isostatic Pressure (HIP) procedure of laser powder bed fusion manufactured Ti-6Al-4V parts was performed to quantitatively estimate the densifcation rate of the material and the infuence of the defect initial size and shape on such rate. The observations were performed in-situ using the Ultrafast Tomography Paris-Edinburgh Cell and the combination of fast phase-contrast synchrotron X-ray tomography and energy dispersive difraction. With this strategy, we could quantify how the efectiveness of HIP depends on the characteristics of a defect. Smaller defects showed a higher densifcation rate, while the defect shape did not have signifcant efect on such rate. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - Hot isostatic pressing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587702 DO - https://doi.org/10.1038/s41598-023-45258-1 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 11 AN - OPUS4-58770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar T1 - Multiscale residual stress analysis and synchrotron X-ray refraction of additively manufactured parts N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The challenges in the residual stress analysis of AM components are discussed on the basis on the show studies performed in BAM. Also, the synchrotron X-ray refraction technique, available in BAM, is presented, showing example of in-situ heating test of Al10SiMg AM material. T2 - Seminar at Grenoble INP, Science et Ingénierie des Matériaux et Procédés (SIMaP) CY - Grenoble, France DA - 01.07.2022 KW - Additive manufacturing KW - Residual stress KW - X-ray refraction KW - Computed tomography PY - 2022 AN - OPUS4-55232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Sydow, B. A1 - Thiede, Tobias A1 - Sizova, I. A1 - Ulbricht, Alexander A1 - Bambach, M. A1 - Bruno, Giovanni T1 - Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator N2 - Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition Zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component. KW - Additive manufacturing KW - Neutron diffraction KW - Residual stress KW - Hybrid manufacturing KW - WAAM KW - Ti-6Al-4V PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508245 DO - https://doi.org/10.3390/met10060701 VL - 10 IS - 6 SP - 701 PB - MDPI AN - OPUS4-50824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander T1 - In situ thermography and optical tomography in LBM - comparison to CT N2 - - Successful proof of concept of synchronous in-situ monitoring of a L-PBF process by thermography and optical tomography - Examination method for data analysis - Identification of correlations between measured signals and defects - Identification of sources of misinterpreting T2 - Workshop on Additive Manufacturing: Process , materials , simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Laser Powder Bed Fusion KW - Thermography KW - Optical Tomography KW - Computed Tomography KW - Additive Manufacturing KW - 3D printing PY - 2019 AN - OPUS4-48521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Development of representative test specimens by thermal history transfer in laser powder bed fusion N2 - The use of components manufactured by laser powder bed fusion (PBF LB/M) and subjected to fatigue loading is still hampered by the uncertainty about the homogeneity of the process results. Numerous influencing factors including the component’s geometry contribute to the risk of process instability and resulting inhomogeneity of properties. This drastically limits the comparability of different built parts and requires expensive full component testing. The thermal history as the spatiotemporal temperature distribution has been identified as a major cause for flaw formation. Therefore, it can be hypothesized that a similar thermal history between components and test specimens enhances their comparability. Following this assumption, a strategy is developed to transfer the intrinsic preheating temperature as a measure of comparability of thermal histories from a region of interest of a complex component to a simple test specimen. This transfer concept has been successfully proved by the use of FEM-based macroscale thermal simulations, validated by calibrated infrared thermography. An adoption of the specimen manufacturing process by the adjustment of the inter layer times was established to manufacture specimens which are representatives of a specific region of a large-scale component in terms of the thermal history similarity criterion. The concept is schematically illustrated in Figure 1 and was demonstrated using a pressure vessel geometry from the chemical industry. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Thermal history KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens PY - 2024 AN - OPUS4-60260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 AN - OPUS4-58656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -