TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - On nominal-actual comparisons for additive manufacturing applications N2 - Nominal-actual comparisons are routinely performed to compare a manufactured specimen to a reference specimen. X-ray Computed Tomography (CT) has brought a profound change in the way that tolerance verifications are performed in industry, by allowing the inner and outer geometries of an object to be measured, without the need for external access or destructive testing. As a results, CT is increasingly used in additive manufacturing applications, where a nominal-actual comparison performed between the digital model (CAD file), used as an input for the 3D printer, and the CT volume from the printed part, can provide invaluable information as to the accuracy of the printing process. However, the nominal-actual comparison process is somewhat different when applied to additively manufactured specimens by comparison to conventionally manufactured specimens. T2 - 9th Conference on Industrial Computed Tomography CY - Padova, Italy DA - 14.02.2019 KW - Computed tomography KW - X-ray computed tomography PY - 2019 AN - OPUS4-47833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - µCT Surface Analysis of LBM Struts - Influence of the Build Angle N2 - In this work, the structural integrity of LBM fabricated IN625 small cylinders (d = 1 mm, h = 6 mm) was investigated regarding the porosity and the surface roughness by means of computed tomography. The measurements were carried out on a GE v|tome|x L 300/180 with a reconstructed voxel size of 2 µm. The pores were analyzed for size, shape and spatial distribution. The correlation between compactness C and spatial distribution showed that elongated pores (C < 0.2) appear exclusively within a distance of 80 µm to the sample surface. The reconstructed surface was digitally meshed and unwrapped to evaluate the mean roughness Ra. Since the gravity correlates linearly with the sine of the build angle, the influence of gravity on porosity and surface roughness was determined. T2 - iCT 2019 CY - Padua, Italien DA - 13.02.2019 KW - Additive Manufacturing KW - Laser Beam Melting KW - Selective Laser Melting KW - Computed Tomography KW - Roughness KW - Porosity KW - Build Angle PY - 2019 AN - OPUS4-47775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 DO - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Heldmann, Alexander A1 - Hofmann, Michael A1 - Evans, Alexander A1 - Petry, Winfried A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Rehmer, Birgit T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to Low Cycle Fatigue (LCF) tests at operating temperature (300°C), the microstructure (phases, crystallographic texture, and grain morphology), the mesostructure (defect shape and distribution), and subsurface RS on the LCF samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - ASTM ICAM 2020 CY - Online meeting DA - 16.11.2020 KW - Additive manufacturing KW - Ti-6Al-4V KW - Computed tomography KW - Residual stress PY - 2020 AN - OPUS4-51695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Avila, Luis A1 - Haubrich, J. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature (Keynote) N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to fatigue tests at elevated temperature, the microstructure, the mesostructure, and subsurface RS on the fatigue samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - EUROMAT 2021 CY - Online meeting DA - 12.09.2021 KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance PY - 2021 AN - OPUS4-53278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Rehmer, Birgit A1 - Haubrich, J. A1 - Avila, Luis A1 - Schoenstein, F. A1 - Serrano Munoz, Itziar A1 - Requena, G. A1 - Bruno, Giovanni T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature N2 - Manufacturing defects, high residual stress (RS), and microstructures affect the structural integrity of laser powder bed fusion (LPBF) Ti-6Al-4V. In this study, the individual effect of these factors on fatigue performance at elevated temperature (300 °C) was evaluated. Material in as-built condition and subjected to post-processing, including two heat treatments and hot isostatic pressing, was investigated. It was found that in the absence of tensile RS, the fatigue life at elevated temperature is primary controlled by the defects; and densification has a much stronger effect than the considered heat treatments on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance KW - Computed tomography PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106239 SN - 0142-1123 VL - 148 SP - 106239 PB - Elsevier Ltd. AN - OPUS4-52369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Peng, Ru Lin A1 - Mishurova, Tatiana A1 - Thuvander, Mattias A1 - Bruno, Giovanni A1 - Brodin, Håkan A1 - Hryha, Eduard T1 - Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy N2 - Powder Bed Fusion – Laser Beam (PBF-LB) of high γ’ strengthened Ni-base superalloys, such as CM247LC, is of great interest for high temperature applications in gas turbines. However, PBF-LB of CM247LC is challenging due to the high cracking susceptibility during PBF-LB processing (solidification cracking) and heat treatment (strain age cracking, mostly caused by residual stresses). This study focuses on understanding the impact of process parameters on microstructure, residual stresses and solidification cracking. Laser power (P), speed (v) and hatch spacing (h) were varied while the layer thickness (t) was fixed. The melt pool size and shape were found to be key factors in minimizing solidification cracking. Narrower and shallower melt pools, achieved using a low line energy density (LED = P/v ≤ 0.1 J/mm), gave low crack densities (0.7 mm/mm2). A tight hatch spacing (h = 0.03 mm) resulted in reduced lack of fusion porosity. Electron backscatter diffraction investigations revealed that parameters giving finer microstructure with 〈100〉crystallographic texture had low crack densities provided they were processed with a low LED. Atom probe tomography elucidated early stages of spinodal decomposition in the as-built condition, where Cr and Al cluster separately. The extent of spinodal decomposition was found to be affected by the LED and the hatch spacing. Samples with low LED and small hatch spacing showed higher degrees of spinodal decomposition. X-ray diffraction residual stress investigations revealed that the residual stress is proportional to the volumetric energy density (VED = P/(v. h. t)). Although low residual stresses can be achieved by using low VED, there is a high risk of lack of fusion. Hence, other parameters such as modified scan strategy, build plate pre-heating and pulsed laser mode, must be further explored to minimize the residual stresses to reduce the strain age cracking susceptibility. KW - Additive manufacturing KW - X-ray CT KW - Non-weldable superalloy KW - Solidification cracking PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597340 DO - https://doi.org/10.1016/j.mtla.2024.102059 SN - 2589-1529 VL - 34 IS - 102059 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Bruno, Giovanni T1 - BAM activities in material characterization by advanced X-ray imaging N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). Also, two successful research project in collaboration with CAM2, Sweden are presented. T2 - CAM2 Annual Meeting CY - Gothenburg, Sweden DA - 25.10.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Roveda, Ilaria A1 - Serrano-Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. T1 - Prediction of the fatigue limit of additively manufactured metallic materials N2 - Structural alloys are largely employed in key industrial sectors and their demand is predicted to rise rapidly for the next decades. Most of these materials require a large amount of energy for extraction and manufacturing, which causes the emission of greenhouse gases and other pollutants. Therefore, strategies for improving the sustainability of structural metallic alloys are urgently needed. Additive Manufacturing (AM), in particular Laser Powder Bed Fusion (PBF-LB/M), aims to be a sustainable manufacturing process, as it allows the build-up of complex geometry in near net-shape from 3D models, while minimizing material waste and the energy required for the process and post-process treatments. Nevertheless, the application of additively manufactured parts in structural safety-relevant applications is still hindered by the poor fatigue performance. The cause of this has been mainly attributed to the presence of manufacturing defects and surface roughness. Therefore, a huge effort has been made to optimize the process parameters and to introduce post-process treatments to minimize the defect content. However, material flaws cannot be fully eliminated, but these can be considered in a damage tolerance framework for the prediction of the fatigue performance of additively manufactured metallic materials, which is essential for part design and qualification. This work aims at presenting different modelling strategies for the prediction of the fatigue limit of AM metals. Simple empirical models and more complex models based on fatigue short crack propagation are proposed. The investigated material is an AlSi10Mg alloy fabricated by PBF-LB/M and subjected to two different low-temperature heat-treatments (265°C for 1 h and 300°C for 2h). The results show that the models can provide good approximation of the fatigue limits and help in the interpretation of the scatter of fatigue data. T2 - ASTM International Conference on Advanced Manufacturing CY - Washington DC, USA DA - 30.10.2023 KW - Additive Manufacturing KW - AlSi10Mg KW - Fatigue KW - Residual stress KW - Microstructure PY - 2023 AN - OPUS4-58866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Effect of heat treatment on residual stress in additively manufactured AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBFLB) allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution in as-built state (AB) and after post-process heat treatments (HT). RS in single edge notch bending (SENB) subjected to different HT are investigated (HT1: 1h at 265°C and HT2: 2h at 300°C). T2 - ESRF User Meeting 2023 CY - Grenoble, France DA - 07.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress PY - 2023 AN - OPUS4-56982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis for AM Materials N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Integrated Additive Manufacturing center, Politecnico Torino CY - Turin, Italy DA - 14.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction PY - 2023 AN - OPUS4-57047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Geometrical features and mechanical properties of the sheet-based gyroid scaffolds with functionally graded porosity manufactured by electron beam melting N2 - Functionally graded porous scaffolds (FGPS) constructed with pores of different size arranged as spatially continuous structure based on sheet-based gyroid with three different scaling factors of 0.05, 0.1 and 0.2 were produced by electron beam powder bed fusion. The pore dimensions of the obtained scaffolds satisfy the values required for optimal bone tissue ingrowth. Agglomerates of residual powder were found inside all structures, which required post-manufacturing treatment. Using X-ray Computed Tomography powder agglomerations were visualized and average wall thickness, wall-to-wall distances, micro- and macro-porosities were evaluated. The initial cleaning by powder recovery system (PRS) was insufficient for complete powder removal. Additional treatment by dry ultrasonic vibration (USV) was applied and was found successful for gyroids with the scaling factors of 0.05 and 0.1. Mechanical properties of the samples, including quasi-elastic gradients and first maximum compressive strengths of the structures before and after USV were evaluated to prove that additional treatment does not produce structural damage. The estimated quasi-elastic gradients for gyroids with different scaling factors lie in a range between 2.5 and 2.9 GPa, while the first maximum compressive strength vary from 52.5 for to 59.8 MPa, compressive offset stress vary from 46.2 for to 53.2 MPa. KW - Additive manufacturing KW - Electron beam KW - Powder bed fusion KW - Triply periodic minimal surfaces KW - Functionally graded porous scaffolds KW - X-ray computed tomography PY - 2023 DO - https://doi.org/10.1016/j.mtcomm.2023.106410 SN - 2352-4928 VL - 35 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-57682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing N2 - Synchrotron X-ray computed tomography (SXCT) at BAMline has been paired with in-situ tensile loading to monitor damage evolution in LPBF Metal Matrix Composite (MMC) 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing of the material leads formation to different categories of Zr-rich inclusions, precipitates and defects. In-situ SXCT test disclosed the critical role of the pre-cracks in the reinforcement phases in the failure mechanisms of LPBF MMC. The damage was initiated from lack-of-fusion defects and cracks propagated through coalescence with other defects. T2 - HZB Uer Meeting 2023 CY - Berlin, Germany DA - 22.06.23 KW - Additive manufacturing KW - BAMline KW - Synchrotron X-ray computed tomography KW - in-situ PY - 2023 AN - OPUS4-57801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Requena, Guillermo A1 - Evans, Alexander A1 - Madia, Mauro A1 - Haubrich, Jan T1 - Influence of microstructure and residual stress state on the fatigue behaviour of a PBF-LB/M AlSi10Mg alloy N2 - The high cooling rates (~106 K/s) occurring during Laser Powder Bed Fusion (PBF-LB/M) of AlSi10Mg induce to the formation of a fine nanometric silicon network in the as-built condition. Such unprecedented microstructure enhances the mechanical strength when compared to equivalent as-cast materials. Nevertheless, PBF-LB/M also leads to high magnitude residual stress (RS) due to the extreme localized temperature gradients. The presence of RS can be detrimental to the fatigue life of engineering components, and great efforts are focused on understanding their generation and evolution after post-process heat treatments. Typically, T6 heat treatments are used to mitigate RS and improve mechanical performances by Mg2Si precipitation during ageing at 160-180°C. Nevertheless, the solutionizing at 500-540°C vanishes the fine silicon network, leading to the formation of micrometric (average of ~2-5 µm) polygonal Si particles, similar to those observed in T6 heat-treated Al-Si cast materials. Therefore, the aim of this work is to evaluate the ability of two so-called low temperature heat treatments (i.e., at 265°C and 300°C) to mitigate RS while retaining the fine as-built microstructure inherent to PBF-LB/M AlSi10Mg. The fatigue behavior of the as-built material is subsequently compared to the two low temperature conditions. T2 - LightMat 2023 CY - Trondheim, Norway DA - 21.06.2023 KW - AlSi10Mg KW - Fatigue crack propagation KW - Residual stress KW - Post processing heat treatment PY - 2023 AN - OPUS4-57807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar T1 - 3D imaging and residual stress analysis for AM Materials N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, leading to potential efficiency and performance improvements. However, the rapid cooling rates associated with the process consequently leads to the generation of high magnitude residual stresses (RS). Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterization of these RS is essential for safety related engineering application and supporting the development of reliable numerical models. Diffraction-based methods for RS analysis using high energy synchrotron X-rays and neutrons enable non-destructive spatially resolved characterization of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research conducted by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys. Special focus will be given to the challenges posed by textured LPBF materials for the reliable choice of the diffraction elastic constants (DECs), which is crucial to the accurate calculation of the level of RS. T2 - Seminar at LTDS, Ecole Centrale de Lyon CY - Lyon, France DA - 15.06.2023 KW - Residual stress KW - Additive manufacturing KW - Diffraction methods PY - 2023 AN - OPUS4-57808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -