TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process N2 - By allowing economic on demand manufacturing of highly customized and complex workpieces, metal based additive manufacturing (AM) has the prospect to revolutionize many industrial areas. Since AM is prone to the formation of defects during the building process, a fundamental requirement for AM to become applicable in most fields is the ability to guarantee the adherence to strict quality and safety standards. A possible solution for this problem lies in the deployment of various in-situ monitoring techniques. For most of these techniques, the application to AM is still very poorly understood. Therefore, the BAM in its mission to provide safety in technology has initiated the project “Process Monitoring of AM” (ProMoAM). In this project, a wide range of in-situ process monitoring techniques, including active and passive thermography, optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods, are applied to laser metal deposition (LMD), laser powder bed fusion and wire arc AM. Since it is still unclear which measured quantities are relevant for the detection of defects, these measurements are performed very thoroughly. In successive steps, the data acquired by all these methods is fused and compared to the results of reference methods such as computer tomography and ultrasonic immersion testing. The goal is to find reliable methods to detect the formation of defects during the building process. The detailed acquired data sets may also be used for comparison with simulations. Here, we show first results of high speed (> 300 Hz) thermographic measurements of the LMD process in the SWIR range using 316L as building material. For these experiments, the camera was mounted fixed to the welding arm of the LMD machine to keep the molten pool in focus, regardless of the shape of the specimen. As the thermograms do not contain any information about the current spatial position during the building process, we use an acceleration sensor to track the movement and synchronize the measured data with the predefined welding path. This allows us to reconstruct the geometry of the workpieces and assign the thermographic data to spatial positions. Furthermore, we investigate the influence of the acquisition wavelength on the thermographic data by comparing measurements acquired with different narrow bandpass filters (50 nm FWHM) in a spectral range from 1150 nm to 1550 nm. This research was funded by BAM within the Focus Area Materials. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes considering upstream and downstream process steps N2 - In manufacturing, fusion welding processes consume significant resources, presenting a significant opportunity for reducing environmental impact. Although there is a qualitative understanding of the environmental implications of these processes, a quantitative assessment of key parameters remains complex. This study introduces a welding-specific methodology that employs life cycle assessment (LCA) to quantitatively evaluate the environmental footprint of fusion welding technologies. Our approach identifies and analyses the principal parameters affecting the environmental performance of various welding techniques, including traditional joint welding and additive manufacturing via the Direct Energy Deposition-Arc (DED-Arc) process. Real-time resource usage data is integrated to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact. This facilitates the advancement of sustainable manufacturing practices. T2 - Joining Smart Technologies - International Automotive Conference CY - Wels, Austria DA - 10.05.2023 KW - Life Cycle Assessment KW - Arc welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes strategies and implementation N2 - In manufacturing, fusion welding processes use a lot of resources, which presents an opportunity to reduce environmental impact. While there is a general understanding of the environmental impact of these processes, it is difficult to quantitatively assess key parameters. This study introduces a welding-specific methodology that uses life cycle assessment (LCA) to evaluate the environmental impact of fusion welding technologies. Our approach analyses the main parameters that affect the environmental performance of different welding techniques, including traditional methods and additive manufacturing through the Direct Energy Deposition-Arc (DED-Arc) process. We integrate real-time resource usage data to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact, facilitating the advancement of sustainable manufacturing practices. T2 - CEMIVET - Circular Economy in Metal Industries CY - Berlin, Germany DA - 06.06.2023 KW - Life Cycle Assessment KW - Fusion welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting JF - ScienceDirect - 10th CIRP Conference on Photonic Technolgies N2 - The paper deals with the integration of a light emitting diode (LED) into an additive manufactured metal component. Selective laser melting (SLM) and laser metal deposition (LMD) are used. The material used is the chrome-nickel steel 316L. The basic component is manufactured by means of SLM and consists of a solid body and an area with grid structure. The solid body includes a duct in the shape of a groove with a recess for the positioning of the power cable. The LED is embedded in the grid structure via an inlet from the solid body. In further processing, the groove is filled with LMD. Two strategies with different parameter combinations were investigated. It shows that a high energy input near the power cable leads to its destruction. By using multiple parameter combinations during the manufacturing process, this destruction can be prevented. There was a comparison of both strategies with regard to the necessary number of tracks and duration of welding time. KW - Additive manufacturing KW - Condition monitoring KW - Process chain KW - Laser-metal-deposition KW - Selektive-laser-melting KW - Embedded electronics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479469 DO - https://doi.org/10.1016/j.procir.2018.08.071 SP - 168 EP - 171 PB - Elsevier Ltd. AN - OPUS4-47946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition JF - Procedia Manufacturing - ScienceDirect N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting N2 - The paper deals with the integration of a light emitting diode (LED) into an additive manufactured metal component. Selective laser melting (SLM) and laser metal deposition (LMD) are used. The material used is the chrome-nickel steel 316L. The basic component is manufactured by means of SLM and consists of a solid body and an area with grid structure. The solid body includes a duct in the shape of a groove with a recess for the positioning of the power cable. The LED is embedded in the grid structure via an inlet from the solid body. In further processing, the groove is filled with LMD. Two strategies with different parameter combinations were investigated. It shows that a high energy input near the power cable leads to its destruction. By using multiple parameter combinations during the manufacturing process, this destruction can be prevented. There was a comparison of both strategies with regard to the necessary number of tracks and duration of welding time. T2 - LANE 2018 CY - Fürth, Germany DA - 03.09.2018 KW - Additive manufacturing KW - Condition monitoring KW - Process chain KW - Laser-metal-depositon KW - Selektive-laser-melting KW - Embedded electronics PY - 2018 AN - OPUS4-47947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nazarzadehmoafi, Maryam A1 - Zscherpel, Uwe A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Maierhofer, Christiane A1 - Waske, Anja T1 - Detection of imprinted artificial defects in additively-manufactured samples by means of radiological inspections N2 - As a part of ProMoAM project, we are optimizing a prototype X-ray backscatter to reach NDT requirements, and thereafter to apply it for process monitoring. Moreover, we studied the capability of a radiography approach to detect artificial defects in AM components made by laser powder bed fusion (L-PBF). T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - NDT KW - Radiological inspections PY - 2019 AN - OPUS4-48515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Überblick und Beispiele zur additiven Fertigung N2 - Im Vortrag wird in die Grundlagen der additiven Fertigungsverfahren eingeführt und dies für metallbasierte Verfahren vertieft. Es werden zudem aktuelle industrielle Anwendungsbeispiele aufgezeigt sowie Forschungsbedarfe und Herausforderungen benannt. T2 - DVS-Bezirksverbandstreffen Berlin CY - Berlin, Germany DA - 28.02.2018 KW - Additive Fertigung KW - Additive manufacturing KW - Laserstrahlschmelzen PY - 2018 AN - OPUS4-46003 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Raute, J. A1 - Linaschke, D. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Porosity of LMD manufactured parts analyzed by Archmimedes method and CT JF - Materials Testing N2 - Pores in additive manufactured metal parts occur due to different reasons and affect the part Quality negatively. Few investigations on the origins of porosity are available, especially for Ni-based super alloys. This paper presents a new study to examine the influence of common processing Parameters on the Formation of pores in parts built by laser metal Deposition using Inconel 718 powder. Further, a comparison between the computed tomography (CT) and the Archimedes method was made. The Investigation Shows that CT is able to identify different kinds of pores and to give further Information about their distribution. The identification of some pores as well as their shape can be dependent on the Parameter Setting of the Analysis tool. Due to limited measurement Resolution, CT is not able to identify correctly pores with Diameters smaller than 0.1 mm, which leads to a false decrease on Overall porosity. The applied Archimedes method is unable to differentiate between gas porosity and other Kinds of holes like internal cracks or lack of Fusion, but it delivered a proper value for Overall porosity. The method was able to provide suitable data for the statistical Evaluation with design of Experiments, which revealed significant Parameters ont he Formation of pores in LMD. KW - Laser metal deposition KW - Additive manufacturing KW - Density measurement KW - Porosity KW - Design of experiments PY - 2018 DO - https://doi.org/10.3139/120.111232 SN - 0025-5300 VL - 60 IS - 11 SP - 1055 EP - 1060 PB - Hanser CY - Berlin AN - OPUS4-47094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition JF - Material Testing 2022 N2 - Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings,walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way. KW - Welding parameter KW - Quality assurance KW - DED KW - Artificial neural network KW - Additive manufacturing PY - 2022 DO - https://doi.org/10.1515/mt-2022-0054 SN - 0025-5300 VL - 64 IS - 11 SP - 1586 EP - 1596 PB - De Gruyter AN - OPUS4-56278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, B. A1 - Marko, A. A1 - Petrat, T. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - 3D laser metal deposition: process steps for additive manufacturing JF - Welding in the World N2 - Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility, and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process steps for LMD as additive manufacturing technology are described. The experiments are conducted using titanium alloy Ti-6Al-4Vand Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures the high geometric flexibility needed for additive manufacturing, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analyzed based on design of experiments. In the second step, a 3D build-up strategy for cylindrical specimen with high dimensional accuracy is described. Process parameters, travel paths, and cooling periods between layers are adjusted. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. As practical example, the fir-tree root profile of a turbine blade is manufactured. The feasibility of LMD as additive technology is evaluated based on this component. KW - Laser metal deposition KW - Build-up strategy KW - Deposition rate KW - Additive manufacturing PY - 2018 DO - https://doi.org/10.1007/s40194-018-0590-x SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 4 SP - 877 EP - 883 PB - Springer Berlin Heidelberg CY - Heidelberg AN - OPUS4-44868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement JF - HTM Journal of Heat Treatment and Materials N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 DO - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, P. ED - Marko, A. ED - Graf, B. ED - Rethmeier, Michael T1 - Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry JF - Additive Manufacturing N2 - With the recent rise in the demand for additive manufacturing (AM), the need for reliable simulation tools to support experimental efforts grows steadily. Computational welding mechanics approaches can simulate the AM processes but are generally not validated for AM-specific effects originating from multiple heating and cooling cycles. To increase confidence in the outcomes and to use numerical simulation reliably, the result quality Needs to be validated against experiments for in-situ and post-process cases. In this article, a validation is demonstrated for a structural thermomechanical simulation model on an arbitrarily curved Directed Energy Deposition (DED)part: at first, the validity of the heat input is ensured and subsequently, the model’s predictive quality for in-situ deformation and the bulging behaviour is investigated. For the in-situ deformations, 3D-Digital Image Correlation measurements are conducted that quantify periodic expansion and shrinkage as they occur. The results show a strong dependency of the local stiffness of the surrounding geometry. The numerical Simulation model is set up in accordance with the experiment and can reproduce the measured 3-dimensional in-situ displacements. Furthermore, the deformations due to removal from the substrate are quantified via 3D-scanning, exhibiting considerable distortions due to stress relaxation. Finally, the prediction of the deformed shape is discussed in regards to bulging simulation: to improve the accuracy of the calculated final shape, a novel Extension of the model relying on the modified stiffness of inactive upper layers is proposed and the experimentally observed bulging could be reproduced in the finite element model. KW - DED KW - Welding simulation KW - Additive manufacturing KW - Dimensional accuracy KW - Digital image correlation PY - 2018 DO - https://doi.org/10.1016/j.addma.2018.10.006 SN - 2214-8604 SN - 2214-7810 VL - 24 SP - 264 EP - 272 PB - Elsevier AN - OPUS4-47226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Wang, J. A1 - Kaiser, L. A1 - Rethmeier, Michael T1 - Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries JF - Steel research international N2 - In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of toolpaths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. Socalled “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections. KW - Porosity KW - Path planning KW - Mechanical properties KW - Laser metal deposition KW - Additive manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510454 DO - https://doi.org/10.1002/srin.202000017 VL - 91 IS - 11 SP - 2000017 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-51045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biegler, M. A1 - Wang, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Automated tool-path generation for rapid manufacturing and numerical simulation of additive manufacturing LMD geometries T2 - ESTAD N2 - In additive manufacturing (AM) Laser Metal Deposition (LMD), parts are built by welding layers of powder feedstock onto a substrate. Applications for steel powders include forging tools and structural components for various industries. For large parts, the choice of tool-paths influences the build-rate, the part performance and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool path generation is essential for the usability of LMD processes. In this contribution, automated tool-path generation approaches are shown and their results are discussed for arbitrary geometries. The investigated path strategies are the classical approaches: “Zig-zag-” and “contour-parallel-strategies”. After generation, the tool-paths are automatically formatted into g-code for experimental build-up and ASCII for a numerical simulation model. Finally, the tool paths are discussed in regards to volume-fill, microstructure and porosity for the experimental samples. This work presents a part of the IGF project 18737N “Welding distortion simulation” (FOSTA P1140) T2 - 4th European Steel Technology and Application Days CY - Dusseldorf, Germany DA - 24.06.2019 KW - Additive manufacturing KW - Directed Energy Deposition KW - Path planning KW - DED KW - Mechanical properties KW - Porosity PY - 2019 SP - 1 AN - OPUS4-50045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Elsner, B. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing JF - Sience and Technology of Welding and Joining N2 - Components distort during directed energy deposition (DED) additive manufacturing (AM) due to the repeated localised heating. Changing the geometry in such a way that distortion causes it to assume the desired shape – a technique called distortion-compensation – is a promising method to reach geometrically accurate parts. Transient numerical simulation can be used to generate the compensated geometries and severely reduce the amount of necessary experimental trials. This publication demonstrates the simulation-based generation of a distortioncompensated DED build for an industrial-scale component. A transient thermo-mechanical approach is extended for large parts and the accuracy is demonstrated against 3d-scans. The calculated distortions are inverted to derive the compensated geometry and the distortions after a single compensation iteration are reduced by over 65%. KW - DED KW - Welding simulation KW - Dimensional accuracy KW - Additive manufacturing KW - Laser metal deposition KW - LMD PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1743927 SP - 1 EP - 8 PB - Taylor & Francis AN - OPUS4-50877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR and NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with a high reliability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of first measurements during the manufacturing process of a commercial laser metal deposition (LMD) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM PY - 2018 AN - OPUS4-45408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Thermography and optical emission spectroscopy: Simultaneous temperature measurement during the LMD process N2 - For metal-based additive manufacturing, sensors and measuring systems for monitoring of the energy source, the build volume, the melt pool and the component geometry are already commercially available. Further methods of optics, spectroscopy and non-destructive testing are described in the literature as suitable for in-situ application, but there are only a few reports on practical implementations. Therefore, a new BAM project aims to develop process monitoring methods for the in-situ evaluation of the quality of additively manufactured metal components. In addition to passive and active thermography, this includes optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods. These methods are used in additive manufacturing systems for selective laser melting, laser metal deposition and wire arc additive manufacturing. To handle the sometimes huge amounts of data, algorithms for efficient preprocessing are developed and characteristics of the in-situ data are extracted and correlated to defects and inhomogeneities, which are determined using reference methods such as computer tomography and metallography. This process monitoring and fusion of data of different measurement techniques should result in a significant reduction of costly and time-consuming, destructive or non-destructive tests after the production of the component and at the same time reduce the production of scrap. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L as building material are presented. Temperature values are extracted from spectroscopic data by fitting of blackbody emission spectra to the experimental data and compared with results from a thermographic camera. Measurements with and without powder flow reveal significant differences between welding at a pristine metal surface and previously melted positions on the build plate, illustrating the significant influence of the partial oxidation of the surface during the first welding process on subsequent welding. The measurement equipment can either be mounted stationary or following the laser path. While first results were obtained in the stationary mode, future applications for online monitoring of the build of whole parts in the mobile mode are planned. This research was funded by BAM within the focus area Material. T2 - 2nd international congress on welding, additive manufacturing and associated non-destructive testing CY - Metz, France DA - 05.06.2019 KW - Additive manufacturing KW - Laser metal deposition KW - Thermography KW - Optical emission spectroscopy KW - Process monitoring PY - 2019 AN - OPUS4-48228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Thermografische Prozessüberwachung bei der BAM – Additive Fertigung von Metallen N2 - Vorstellung des TF-Projektes ProMoAM und von Ergebnissen des in-situ Monitorings mit Thermografie T2 - Sitzung des VDI-GPL-FA 105.2 Additive Manufacturing-Metalle CY - Online meeting DA - 27.02.2019 KW - Additive manufacturing KW - In situ Monitoring KW - Thermograhy PY - 2019 AN - OPUS4-53534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in metal AM: Comparison of high-speed NIR thermography and MWIR thermography N2 - Additive manufacturing (AM) opens the route to a range of novel applications.However, the complexity of the manufacturing process poses a challenge for the production of defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields, thermography is a valuable tool for process surveillance. The high process temperatures in metal AM processes allow one to use cameras usually operating in the visible spectral range to detect the thermally emitted radiation from the process. In our work, we compare the results of first measurements during the manufacturing processes of a commercial laser metal deposition (LMD) setup and a laser beam melting (LBM) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - Additive Manufacturing Benchmarks 2018 CY - Gaithersburg, MA, USA DA - 18.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - Laser beam melting KW - ProMoAM PY - 2018 AN - OPUS4-45401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -