TY - CONF A1 - Hilgenberg, Kai T1 - Eine digitale QI für die moderne Produktion: Digital Quality Assurance in der Additiven Fertigung N2 - Der Vortragt stellt den Use Case Additive Fertigung und das zugehörige Reallabor in QI Digital in Kürze vor und zeigt, mit welchen digitalen Tools das Reallabor mit der übergeordneten Plattform QualityX Daten austauscht. T2 - QI Forum 2023 CY - Berlin, Germany DA - 10.10.2023 KW - Additive Fertigung KW - Digitale Qualitätssicherung KW - QI Digital PY - 2023 AN - OPUS4-58830 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Entwicklung der Mikrostruktur der mechanischen Eigenschaften und der Eigenspannungen in L-PBF 316L N2 - Die additive Fertigung (AM) metallischer Werkstoffe mittels Laser Powder Bed Fusion (L-PBF) ermöglicht einzigartige hierarchische Mikrostrukturen, die zu Verbesserungen bestimmter mechanischer Eigenschaften gegenüber konventionell hergestellten Varianten derselben Legierung führen können. Allerdings ist das L-PBF-Verfahren häufig durch das Vorhandensein hoher Eigenspannungen gekennzeichnet, die es zu verstehen und zu mindern gilt. Daher ist das Verständnis der Mikrostrukturen, der Eigenspannungen und der daraus resultierenden mechanischen Eigenschaften entscheidend für eine breite Akzeptanz bei sicherheitskritischen Anwendungen. Die BAM hat ein multidisziplinäres Forschungsprogramm gestartet, um diese Aspekte bei LPBF 316L zu untersuchen. Der vorliegende Beitrag stellt einige der wichtigsten Ergebnisse vor: der Einfluss von Prozessparametern auf die Mikrostruktur, der Einfluss von Mikrostruktur und Textur auf die Festigkeit, Kriechverhalten und Schädigung und die Stabilität von Eigenspannungen und Mikrostruktur unter Wärmebehandlungsbedingungen. T2 - DGM 3. Fachtagung Werkstoffe und Additive Fertigung CY - Dresden, Germany DA - 11.05.2022 KW - Mechanische Eigenschaften KW - Additive Fertigung KW - L-PBF 316L KW - Entwicklung KW - Mikrostruktur KW - Eigenspannung PY - 2022 AN - OPUS4-55786 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Einfluss der Zwischenlagenzeit und der Bauteilhöhe auf die resultierenden Eigenschaften laserstrahlgeschmolzener austenitischer Stahlbauteile N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - DGM Fachtagung "Werkstoffe und Additive Fertigung" CY - Online meeting DA - 13.05.2020 KW - Laser Powder Bed Fusion KW - Additive Fertigung KW - Zwischenlagenzeit KW - In-situ Monitoring PY - 2020 AN - OPUS4-50788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Thermografische Prozessüberwachung bei der BAM – Additive Fertigung von Metallen N2 - Vorstellung des TF-Projektes ProMoAM und von Ergebnissen des in-situ Monitorings mit Thermografie T2 - Sitzung des VDI-GPL-FA 105.2 Additive Manufacturing-Metalle CY - Online meeting DA - 27.02.2019 KW - Additive manufacturing KW - In situ Monitoring KW - Thermograhy PY - 2019 AN - OPUS4-53534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai ED - Eiber, M. T1 - Prozessinduzierte Vorerwärmung beim pulverbettbasierten Laserstrahlschmelzen und deren Auswirkung auf die Bauteileigenschaften austenitischer Stahlbauteile N2 - Heterogene Fehlstellendichten und Mikrostrukturausbildungen sind große Herausforderungen für den Einsatz des pulverbettbasierten Laserstrahlschmelzens (L PBF) besonders für sicherheitskritische Bauteile. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (ILT) bisher wenig Beachtung gefunden. Sie nimmt ebenso wie die Bauteilgeometrie Einfluss auf die thermische Historie während der Fertigung. Ihr Einfluss auf die intrinsische Vorerwärmung ist in Kombination mit der Bauteilhöhe mittels thermografischer Temperaturmessung untersucht worden. Signifikante Unterschiede in der thermischen Historie konnten dabei mit variierenden Schmelzbaddimensionen, Korngrößen und Fehlstellendichten am Beispiel der austenitischen Stahllegierung AISI 316L in Zusammenhang gebracht werden. T2 - DVM 6. Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 03.11.2021 KW - Additive Fertigung KW - Laserstrahlschmelzen KW - In-situ Prozessüberwachung KW - Wärmeakkumulation KW - Zwischenlagenzeit PY - 2021 DO - https://doi.org/10.48447/Add-2021-003 SP - 19 EP - 30 PB - Deutscher Verband für Materialforschung und -prüfung (DVM) CY - Berlin AN - OPUS4-54287 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Überblick und Beispiele zur additiven Fertigung N2 - Im Vortrag wird in die Grundlagen der additiven Fertigungsverfahren eingeführt und dies für metallbasierte Verfahren vertieft. Es werden zudem aktuelle industrielle Anwendungsbeispiele aufgezeigt sowie Forschungsbedarfe und Herausforderungen benannt. T2 - DVS-Bezirksverbandstreffen Berlin CY - Berlin, Germany DA - 28.02.2018 KW - Additive Fertigung KW - Additive manufacturing KW - Laserstrahlschmelzen PY - 2018 AN - OPUS4-46003 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - Innotesting 2019 CY - Wildau, Germany DA - 21.02.2019 KW - Additive Fertigung KW - Thermografie KW - Prozessüberwachung PY - 2019 AN - OPUS4-47457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Duktilität KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Festigkeit PY - 2020 AN - OPUS4-51656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Räpke, Toni A1 - Heinze, C. A1 - Hilgenberg, Kai A1 - Xu, Hongwu A1 - Scheuchner, Nils A1 - Mühlenweg, A. A1 - Odabasi, E. A1 - Rule, D. A1 - Hajduk, M. T1 - Geometrie- und Prozesseinflüsse auf lokale Bauteileigenschaften in der metallischen additiven Fertigung mittels Laserstrahlschmelzen N2 - Die mechanischen Eigenschaften und die Standardparametersätze werden im additiven Fertigungsverfahren Laser Powder Bed Fusion (L-PBF) zumeist an Körpern ermittelt, die unter festen Randbedingungen gefertigt werden. In der Literatur wird allerdings von verschiedenen Autoren auf einen Einfluss von Geometrie und Prozess auf die resultierenden Eigenschaften hingewiesen [1, 2, 3]. Aufgrund des häufig großen Komplexitätsgrads von L-PBF Bauteilen und Prozessen, ist eine Abweichung angenommener Eigenschaften daher nicht auszuschließen. Das kann besonders für tragende und sicherheitsrelevante Komponenten kritisch sein und ist eine Herausforderung für die Qualitätssicherung. Aufwendige Trial-and-Error Versuche sind zumeist die Folge. Ein einheitliches und umfassendes Verständnis der Einflussfaktoren auf die resultierenden Eigenschaften im L-PBF Prozess ist zum aktuellen Stand nicht vorhanden. In diesem Vortrag werden erste Ergebnisse einer Studie vorgestellt, in der systematisch die Bandbreite möglicher Defekt- und Mikrostrukturvariationen in L-PBF Bauteilen am Beispiel der Nickelbasislegierung Haynes 282 untersucht wird. Aufbauend auf einer modellbasierten Beschreibung des lokalen Wärmehaushalts wurden Versuchspläne entwickelt, die eine Vielzahl möglicher Prozess- und Geometriekonfigurationen realer Anwendungen abbilden können. Zur Untersuchung des Geometrieeinflusses wurden typische Geometrieelemente komplexer Strukturen und deren Ausprägungen identifiziert. Prozessseitig wurden die Position im Bauraum, Schwankungen der Laserleistung, die Zwischenlagenzeit und die Belichtungsstrategie innerhalb der Schicht als typische Faktoren berücksichtigt. Die Zwischenlagenzeit bildet dabei Variationen im Bauraumfüllgrad ab. Die Belichtungsstrategie untersucht Effekte wie die Zwischenvektorzeit (engl. inter vector time, IVT) oder die lokale Vektorlänge. Die verschiedenen Konfigurationen wurden metallografisch bewertet. Die bisherigen Ergebnisse können einen Einfluss der Geometrie und des Prozesses auf die Defektbildung und die Mikrostruktur in L-PBF Bauteilen aufzeigen. Durch prozessbegleitende thermografische in situ Messungen konnte außerdem eine Abhängigkeit von lokalen und globalen Temperaturfeldern identifiziert werden. Die Erkenntnisse zeigen zudem, dass der geometrische Einfluss auf den lokalen Wärmehaushalt von Anordnung, Gestalt und Dimensionen der zweidimensionalen Belichtungsbereiche über die Aufbauhöhe abhängt. Das gewonnene Verständnis soll in die Entwicklung von Konstruktionsrichtlinien und Prüfkörpern einfließen, um Variationen lokaler Bauteileigenschaften in der zukünftigen Bauteil- und Prozessauslegung berücksichtigen zu können. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive Fertigung KW - L-PBF PY - 2022 AN - OPUS4-55516 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -