TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Zirconium chloro fluoride as catalyst for C-F bond activation and HF transfer of fluoroalkanes N2 - In this work1, we have successfully synthesised amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present the first heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - RSC Poster 2024 CY - Online meeting DA - 05.03.2024 KW - ZCF PY - 2024 AN - OPUS4-59619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - An Amorphous Lewis-acidic Zirconium Chlorofluoride as HF Shuttle: C-F Bond Activation and Formation N2 - In recent years, fluorine chemistry has gained increasing political attention. Owing to a growing shortage of fluorspar, a raw material used for producing fluorinated base chemicals, fluorospar has been named among the 30 critical raw materials in the EU.2 As such, it becomes increasingly important to recycle existing fluorinated compounds and make them available as sources of fluorine for reactions. Significant progress has been made in the field of C-F bond activation using heterogeneous catalysts such as aluminum chlorofluoride (ACF).3–5 However, the transfer of fluorine atoms from one molecule to another using heterogeneous catalysts has not yet been reported. In this study, we successfully synthesized amorphous zirconium chlorofluoride (ZCF), and we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present a heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - 2nd South African Fluorine Symposium CY - Sun City, South Africa DA - 09.02.2024 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation KW - HF-shuttle PY - 2024 AN - OPUS4-59618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Heldmann, Alexander A1 - Hofmann, Michael A1 - Evans, Alexander A1 - Petry, Winfried A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - High temperature fatigue crack growth in nickel-based alloys joined by brazing and additive manufacturing N2 - Gas turbine components, made of nickel-based alloys, undergo material damage due to high temperatures and mechanical stresses. These components need periodic replacement to avoid efficiency loss and failure. Repair of these parts is more cost-effective than replacement. State-of-the-art repair technologies, including different additive manufacturing (AM) and brazing processes, are considered for efficient restoration. Materials properties mismatches and/or internal defects in repaired parts may expedite crack initiation and propagation, reducing fatigue life. To understand the crack growth behavior in joining zones and predict the remaining life of repaired components, fatigue crack growth (FCG) tests were conducted on specimens of nickel-based alloys joined via brazing, pre-sintered preforms and AM. The FCG experimental technique was successfully adapted for joined specimens and results indicate that the investigated braze material provides a lower resistance to crack growth. In AM-sandwich specimens, the crack growth rates are significantly reduced at the interface of AM and cast material. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, USA DA - 03.03.2024 KW - Fatigue crack growth KW - Joined nickel-based alloys PY - 2024 AN - OPUS4-59854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Peng, Ru Lin A1 - Mishurova, Tatiana A1 - Thuvander, Mattias A1 - Bruno, Giovanni A1 - Brodin, Håkan A1 - Hryha, Eduard T1 - Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy N2 - Powder Bed Fusion – Laser Beam (PBF-LB) of high γ’ strengthened Ni-base superalloys, such as CM247LC, is of great interest for high temperature applications in gas turbines. However, PBF-LB of CM247LC is challenging due to the high cracking susceptibility during PBF-LB processing (solidification cracking) and heat treatment (strain age cracking, mostly caused by residual stresses). This study focuses on understanding the impact of process parameters on microstructure, residual stresses and solidification cracking. Laser power (P), speed (v) and hatch spacing (h) were varied while the layer thickness (t) was fixed. The melt pool size and shape were found to be key factors in minimizing solidification cracking. Narrower and shallower melt pools, achieved using a low line energy density (LED = P/v ≤ 0.1 J/mm), gave low crack densities (0.7 mm/mm2). A tight hatch spacing (h = 0.03 mm) resulted in reduced lack of fusion porosity. Electron backscatter diffraction investigations revealed that parameters giving finer microstructure with 〈100〉crystallographic texture had low crack densities provided they were processed with a low LED. Atom probe tomography elucidated early stages of spinodal decomposition in the as-built condition, where Cr and Al cluster separately. The extent of spinodal decomposition was found to be affected by the LED and the hatch spacing. Samples with low LED and small hatch spacing showed higher degrees of spinodal decomposition. X-ray diffraction residual stress investigations revealed that the residual stress is proportional to the volumetric energy density (VED = P/(v. h. t)). Although low residual stresses can be achieved by using low VED, there is a high risk of lack of fusion. Hence, other parameters such as modified scan strategy, build plate pre-heating and pulsed laser mode, must be further explored to minimize the residual stresses to reduce the strain age cracking susceptibility. KW - Additive manufacturing KW - X-ray CT KW - Non-weldable superalloy KW - Solidification cracking PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597340 DO - https://doi.org/10.1016/j.mtla.2024.102059 SN - 2589-1529 VL - 34 IS - 102059 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Moritz A1 - Stawarczyk, Bogna A1 - Günster, Jens A1 - Zocca, Andrea T1 - Influence of additives and binder on the physical properties of dental silicate glass-ceramic feedstock for additive manufacturing N2 - Objectives The aim of the study was to investigate the impact of organic additives (binder, plasticizer, and the cross-linking ink) in the formulation of water-based feedstocks on the properties of a dental feldspathic glass-ceramic material developed for the slurry-based additive manufacturing technology “LSD-print.” Material and methods Three water-based feldspathic feedstocks were produced to study the effects of polyvinyl alcohol (AC1) and poly (sodium 4-styrenesulfonate) (AC2) as binder systems. A feedstock without organic additives was tested as the control group (CG). Disc-shaped (n = 15) and bar (n = 7) specimens were slip-cast and characterized in the green and fired states. In the green state, density and flexural strength were measured. In the fired state, density, shrinkage, flexural strength (FS), Weibull modulus, fracture toughness (KIC), Martens parameters, and microstructure were analyzed. Disc-shaped and bar specimens were also cut from commercially available CAD/CAM blocks and used as a target reference (TR) for the fired state. Results In the green state, CG showed the highest bulk density but the lowest FS, while the highest FS in the green state was achieved with the addition of a cross-linking ink. After firing, no significant differences in density and a similar microstructure were observed for all slip-cast groups, indicating that almost complete densification could be achieved. The CAD/CAM specimens showed the highest mean FS, Weibull modulus, and KIC, with significant differences between some of the slip-cast groups. Significance These results suggest that the investigated feedstocks are promising candidates for the slurry-based additive manufacturing of restorations meeting the class 1a requirements according to DIN EN ISO 6871:2019–01. KW - Firing KW - 3D-printing KW - Silicate glass-ceramics KW - Debinding PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600516 DO - https://doi.org/10.1016/j.jmbbm.2024.106563 SN - 1751-6161 VL - 155 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-60051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - LSD-print: a 10-years journey of an additive manufacturing technology from porcelain to technical ceramics N2 - Motivated by the aim of developing an additive manufacturing (AM) technology easily integrated in the process chains of the ceramic industry, the LSD-print technology was conceived as a slurry-based variation of binder jetting (BJ). BJ and other powder bed technologies (such as powder bed fusion) are amongst the most successful AM techniques, especially for metals and polymers, thanks to their high productivity and scalability. The possibility to use commercially available feedstocks (in the form of powders or granules) makes BJ also attractive for ceramic materials. The application of these techniques to most advanced ceramics has however been difficult so far, because of the limitations in depositing homogeneous layers with fine, typically poorly flowable powders. In this context, the "layerwise slurry deposition" (LSD) was proposed at TU Clausthal (Germany) as a slurry-based deposition of ceramic layers by means of a doctor blade. Combined with layer-by-layer laser sintering of the material, the LSD process was originally demonstrated for the rapid prototyping of silicate ceramics. Due to the difficulties in controlling the microstructure and the defect formation in laser-sintered technical ceramics, the LSD process was later combined with inkjet printing in the LSD-print technology, which has been further developed at BAM (Germany) in the past decade. The LSD-print technology combines the high speed of inkjet printing, typical of BJ, with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. Due to the mechanical stability of the powder bed, the process can also be carried out with continuous layer deposition on a rotating platform, which further increases its productivity. This presentation will delve into 10 years of research on the LSD-print of a wide variety of technical ceramics including alumina, silicon carbides and dental ceramics. The discussion highlights how a seemingly small process and feedstock modification (from powders to slurries) has great influence on the challenges and potential of this process, which are being addressed on its path to industrialization. T2 - young Ceramists Additive Manufacturing Forum (yCAM) 2024 CY - Tampere, Finland DA - 06.05.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - Slurry KW - LSD-print PY - 2024 AN - OPUS4-60056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Schubert, Hendrik A1 - Günster, Jens T1 - Water-based additive manufacturing of ceramics by Laser-Induced Slip Casting (LIS) N2 - The Laser-Induced Slip Casting is an additive manufacturing technology specifically developed for ceramic materials using water-based ceramic slurries. The process takes place layer-by-layer in a similar fashion as top-down vat photopolymerization, selectively consolidating each layer by means of a laser energy source positioned on the top. Contrary to vat photopolymerization, in which the consolidation is achieved by selectively cross-linking a ceramic-filled resin, LIS uses water-based slurries with a low amount of organic additives (typically < 5 wt%) as feedstocks. In LIS, a green body is formed by local evaporation of water which causes the suspension to collapse forming a cast, following a mechanism similar to slip casting. Only a small content of organic additives is needed to effectively disperse the ceramic particles and to increase the green strength. The technology is very versatile and can be applied to all ceramic systems that can be dispersed in water. One of the main advantages is that even dark materials such as silicon carbide can be processed without issues related to light scattering and absorption. The presentation will discuss strengths and limitations of LIS compared to other AM technologies and will highlight the latest results for alumina and for silicon carbide ceramics. T2 - 48th International Conference and Expo on Advanced Ceramics and Composites (ICACC2024) CY - Daytona, FL, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Ceramic KW - Water-based KW - Slurry KW - Laser PY - 2024 AN - OPUS4-60054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - Continuous layer deposition for the Additive Manufacturing of ceramics by Layerwise Slurry Deposition (LSD-print) N2 - Powder bed technologies are amongst the most successful Additive Manufacturing (AM) techniques. The application of these techniques to most ceramics has been difficult so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method enabling the use of powder bed AM technologies also for advanced ceramic materials. The layerwise slurry deposition consists of the layer-by-layer deposition of a ceramic slurry by means of a doctor blade, in which the slurry is deposited and dried to achieve a highly packed powder. Not only very fine, submicron powders can be processed with low organics, but also the dense powder bed provides excellent support to the parts built. The LSD technology can be combined with binder jetting to develop the so-called “LSD-print” process. LSD-print combines the high-speed printing of binder jetting with the possibility of producing a variety of high-quality ceramics with properties comparable to traditional processing. The latest development of this technology shows that it is possible to print ceramic parts in a continuous process by depositing a layer onto a rotating platform, growing a powder bed following a spiral motion. The unique mechanical stability of the layers in LSD-print allows to grow a powder bed several centimeters thick without any lateral support. The continuous layer deposition allows to achieve a productivity more than 10X higher compared to the linear deposition, approaching a build volume of 1 liter/hour. T2 - 3rd Global Conference and Exhibition on Smart Additive Manufacturing, Design & Evaluation Smart MADE CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - LSD-print KW - Slurry KW - Binder jetting PY - 2024 AN - OPUS4-60055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Zocca, Andrea A1 - Günster, Jens T1 - Fully automated and decentralized fused filament fabrication of ceramics for remote applications N2 - Manufacturing of ceramic components in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of ceramic components with complex geometries. Parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. This poster presents an innovative approach: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the ceramic filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering of the ceramic parts and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - yCAM 2024 CY - Tampere, Finnland DA - 06.05.2024 KW - Fused Filament Fabrication PY - 2024 AN - OPUS4-60057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Darvishi Kamachali, Reza T1 - Mean-field modeling and phase-field simulation of grain growth under directional driving forces N2 - Directional grain growth is a common phenomenon in the synthetic and natural evolution of various polycrystals. It occurs in the presence of an external driving force, such as a temperature gradient, along which grains show a preferred, yet competitive, growth. Novel additive manufacturing processes, with intense, localized energy deposition, are prominent examples of when directional grain growth can occur, beneath the melting pool. In this work, we derive a phenomenological mean-field model and perform 3D phase-field simulations to investigate the directional grain growth and its underlying physical mechanisms. The effect of the intensity of driving force is simulated and systematically analyzed at the evolving growth front as well as various cross-sections perpendicular to the direction of the driving force. We found that although the directional growth significantly deviates from normal grain growth, it is still governed by a power law relation α tⁿ with an exponent n ~ 0.6–0.7. The exponent n exhibits a nontrivial dependence on the magnitude of the directional driving force, such that the lowest growth exponent is observed for intermediate driving forces. We elaborate that this can originate from the fact that the forces at grain boundary junctions evolve out of balance under the influence of the directional driving force. With increasing the driving forces, the growth exponent asymptotically approaches a value of n ≈ 0.63, imposed by the largest possible grain aspect ratio for given grain boundary energies. The current combined mean-field and phase-field framework pave the way for future exploration in broader contexts such as the evolution of complex additively manufactured microstructures. KW - Additive manufacturing KW - Phase-field simulation KW - Grain growth KW - Mean-field modelling KW - Directional grain growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593210 DO - https://doi.org/10.1016/j.mtla.2023.101989 SN - 2589-1529 VL - 33 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-59321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bruno, Giovanni ED - Makul, Matt T1 - Investigation of a New Ti Alloy for a New Generation of Additively Manufactured Implants with Lattice N2 - A new titanium alloy improving the operation of implants additively manufactured and including laterally closed lattice structures is proposed. The new alloy possesses an increased affinity to the bone. The measured bone–interface implant (BII) of less than 10 mm and bone–implant contact (BIC) of 95% demonstrated an excellent osseointegration. Furthermore, since additive manufacturing naturally leads to a high-roughness surface finish, the wettability of the implant is increased. The combination of these factors is pushing ossification beyond its natural limits. In addition, the quality and speed of the ossification and osseointegration in/around laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. KW - X-ray Computed tomography KW - Defects KW - Machine Learning KW - Implants KW - Lattices PY - 2024 DO - https://doi.org/10.9734/bpi/cpstr/v7/7198E VL - 7 SP - 12 EP - 37 AN - OPUS4-59754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Mishurova, Tatiana A1 - Evans, Alexander A1 - Fitch, Andrew N. A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Serrano‐Munoz, Itziar T1 - Evolution of interphase stress over a crack propagation plane as a function of stress relief heat treatments in a PBF‐LB/M AlSi10Mg alloy N2 - AbstractIn this study, we compare the residual stress state in a laser powder bed fusion (PBF‐LB/M) AlSi10Mg alloy in the as‐built (AB) condition with that after two different heat treatments (265 °C for 1 h, HT1; and 300 °C for 2 h, HT2). The bulk residual stress (RS) is determined using synchrotron X‐ray diffraction (SXRD), and near‐surface profiles are determined using laboratory energy‐dispersive X‐ray diffraction (EDXRD). The EDXRD results do not reveal any notable difference between the conditions at a depth of 350 μm, suggesting that the machining process yields a comparable residual stress state in the near‐surface regions. On the other hand, the SXRD results show that HT1 is more effective in relieving the bulk RS. It is observed that HT1 reduces the RS state in both the aluminium matrix and the silicon network. In addtion, HT2 does not have a significant impact on relaxing the RS as‐built state of the matrix, although it does induce a reduction in the RS magnitudes of the Si phase. It is concluded that the heat treatment stress relieving is effective as long as the Si‐network is not disaggregated. KW - Interphase residual stress KW - Laboratory energy-dispersive X-ray diffraction (EDXRD) KW - PBFLB/M AlSi10Mg alloy KW - Stress-relief heat-treatments KW - Synchrotron X-ray diffraction (SXRD) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597591 DO - https://doi.org/10.1111/str.12475 SP - 1 EP - 13 PB - John Wiley & Sons Ltd. AN - OPUS4-59759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabo Rios, Alberto A1 - Mishurova, Tatiana A1 - Cordova, Laura A1 - Persson, Mats A1 - Bruno, Giovanni A1 - Olevsky, Eugene A1 - Hryha, Eduard T1 - Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L N2 - Efficient density evolution during sintering of the as-printed component is vital to reach full densification and required properties of binder jet (BJT) components. However, due to the high porosity and brittle nature of the green compact, analysis of the microstructure development during sintering is very difficult, resulting in lack of understanding of the densification process. Density development from green state (57 ± 1.6 %) up to full density (99 ± 0.3 %) was characterized by high-resolution synchrotron X-Ray computed tomography (SXCT) on BJT 316L samples from ex-situ interrupted sintering tests. Periodicity of density fluctuations along the building direction was revealed for the first time and was related to the layer thickness of ~ 42 μm during printing that decreased down to ~ 33 μm during sintering. Sintering simulations, utilizing a continuum sintering model developed for BJT, allowed to replicate the density evolution during sintering with a mean error of 2 % and its fluctuation evolution from green (1.66 %) to sintered (0.56 %) state. Additionally, simulation of extreme particle size segregation (1 μm to 130 μm) suggested that non-optimized printing could lead to undesirable density fluctuation amplitude rapid increase (~10 %) during sintering. This might trigger the nucleation of defects (e.g., layer delamination, cracking, or excessive residual porosity) during the sintering process. KW - Additive manufacturing KW - Synchrotron X-ray CT KW - Binder Jetting KW - Sintering KW - FEM Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594389 DO - https://doi.org/10.1016/j.matdes.2024.112690 SN - 0264-1275 VL - 238 SP - 1 EP - 18 PB - Elsevier AN - OPUS4-59438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Charmi, Amir T1 - A multiscale numerical framework for the simulation of anistropic material response of additively manufactured stainless steel 316L undergoing large plastic deformation N2 - Additive manufacturing (AM) offers significantly greater freedom of design compared to conventional manufacturing processes since the final parts are built layer by layer. This enables metal AM, also known as metal 3D printing, to be utilized for improving efficiency and functionality, for the production of parts with very complex geometries, and rapid prototyping. However, despite many technological advancements made in recent years, several challenges hinder the mass adoption of metal AM. One of these challenges is mechanical anisotropy which describes the dependency of material properties on the material orientation. Therefore, in this work, stainless steel 316L parts produced by laser-based powder bed fusion are used to isolate and understand the root cause of anisotropy in AM parts. Furthermore, an efficient and accurate multiscale numerical framework is presented for predicting the deformation behavior of actual AM parts on the macroscale undergoing large plastic deformations. Finally, a novel constitutive model for the plastic spin is formulated to capture the influence of the microstructure evolution on the material behavior on the macroscale. KW - Additive Fertigung KW - Austenitischer Stahl KW - Finite-Elemente-Methode KW - Mehrskalenmodell KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20240207-173356-002 DO - https://doi.org/10.25643/dbt.59550 SP - 1 EP - 163 PB - Bauhaus-Universität Weimar CY - Weimar AN - OPUS4-59511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabitz, Konstantin Manuel A1 - Antretter, Thomas A1 - Rethmeier, Michael A1 - El-Sari, Bassel A1 - Schubert, Holger A1 - Hilpert, Benjamin A1 - Gruber, Martin A1 - Sierlinger, Robert A1 - Ecker, Werner T1 - Numerical and experimental assessment of liquid metal embrittlement in externally loaded spot welds N2 - Zinc-based surface coatings are widely applied with high-strength steels in automotive industry. Some of these base materials show an increased brittle cracking risk during loading. It is necessary to examine electrogalvanized and uncoated samples of a high strength steel susceptible to liquid metal embrittlement during spot welding with applied external load. Therefore, a newly developed tensile test method with a simultaneously applied spot weld is conducted. A fully coupled 3D electrical, thermal, metallurgical and mechanical finite element model depicting the resistant spot welding process combined with the tensile test conducted is mandatory to correct geometric influences of the sample geometry and provides insights into the sample’s time dependent local loading. With increasing external loads, the morphology of the brittle cracks formed is affected more than the crack depth. The validated finite element model applies newly developed damage indicators to predict and explain the liquid metal embrittlement cracking onset and development as well as even ductile failure. KW - Resistance spot welding KW - Finite element simulation KW - Advanced high-strength steel KW - Liquid metal embrittlement KW - Damage prediction KW - Tensile resistance spot welding experiment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594848 DO - https://doi.org/10.1007/s40194-024-01696-7 SN - 0043-2288 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-59484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ulbricht, Alexander A1 - Gardei, André T1 - Classic Materials Testing in the Light of CT N2 - Currently, mandatory requirements and recommendations for the detection of irregularities in laser beam welded joints are based on classic micrographs as set out in the standard ISO 13919-1:2019. Compared to classic micrographs, computed tomography enables a non-destructive, three-dimensional and material-independent mode of operation, which delivers much more profound results. Even in building material testing, methods with limited informative value can be checked and supplemented by CT examinations. T2 - 13th International Conference on Industrial Computed Tomography (iCT2024) CY - Wels, Austria DA - 06.02.2024 KW - Computed Tomography KW - Additive Manufacturing KW - Machine-Learning Segmentation KW - Air Void System PY - 2024 AN - OPUS4-59568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Applications of x-ray computed tomography in material science N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field material characterization by X-ray imaging is presented. The principle of X-ray Computed Tomography (XCT) is explained. The multiple examples of application of quantitative analysis by XCT are reported, such as additive manufacturing, Li-ion battery, concrete research. T2 - Lecture for PhD students at Politecnico di Torino CY - Turin, Italy DA - 14.03.2024 KW - X-ray computed tomography KW - Additive manufacturing PY - 2024 AN - OPUS4-59689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593515 DO - https://doi.org/10.3390/met14010082 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez Garcia, Maria Amparo A1 - Bell, Jeremy A1 - Rurack, Knut T1 - Characterization and testing of commercial photo-resins for the fabrication of free-form optical elements with standard LCD 3D printer for advanced opto-biosensing applications N2 - Optical biosensors often show remarkable performance and can be configured in many ways for sensitive, selective, and rapid measurements. However, the high-quality and advanced optical assemblies required to read out the sensor signals, for example, Total Internal Reflection Fluorescence (TIRF) or Supercritical Angle Fluorescence (SAF) microscopy, which necessitate complex and expensive optical elements. Particularly in optical method development, researchers or developers are often confronted with limitations because conventional manufacturing processes for optical elements can be restrictive in terms of design, material, time, and cost. Modern and high-resolution 3D printing techniques make it possible to overcome these challenges and enable the fabrication of individualized and personalized free-form optical components, which can reduce costs and significantly shorten the prototyping timeline—from months to hours. In this work, we use a modern, high-resolution (< 22 µm) commercial Liquid Crystal Display (LCD)-based 3D printer, for which we spectroscopically and physically characterized commercial photo-resins printable with the LCD technique in the first step (Figure 1). The aim was not only to produce a printed element with a high surface quality that mitigates the inner filter effects caused by attenuation (high optical density (OD) due to reflection and scattering), but also to select a material with a high refractive index (RI>1.5) and high transmission values (>90% transmittance) in the visible to near-infrared spectral range (approx. 450 – 900 nm) that exhibits little or no autofluorescence. Using a selection of suitable resins, lenses and free-form optical elements were manufactured for comparison with standard glass or plastic counterparts. T2 - Europt(r)ode XVI CY - Birmingham, England DA - 24.03.2024 KW - 3D-printing KW - Optics KW - Photopolymerization KW - Sensors KW - Rapid prototyping PY - 2024 AN - OPUS4-59875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - In order to be able to manipulate ceramic powder compacts and ceramic suspensions (slurries) within their volume with light, a minimum transparency of the materials is required. Compared to polymers and metals, ceramic materials are characterized by the fact that they have a wide electronic band gap and therefore a wide optical window of transparency. The optical window generally ranges from less than 0.3 µm to 5 µm wavelength. In order to focus light into the volume of a ceramic powder compact, its light scattering properties must therefore be tailored. In this study, we present the physical background and material development strategies for the application of two-photon polymerization (2PP) and selective volumetric sintering for the additive manufacturing of structures in the volume of ceramic slips and green compacts. T2 - SmartMade 2024 CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina A1 - Stark, T. A1 - Arduini, M. A1 - Manara, J. A1 - Altenburg, Simon T1 - Emissivity – Gamechanger for quantitative in-situ monitoring N2 - For a deep process understanding of the laser powder bed fusion process (PBF-LB/M), recording of the occurring surface temperatures is of utmost interest and would help to pave the way for reliable process monitoring and quality assurance. A notable number of approaches for in-process monitoring of the PBF-LB/M process focus on the monitoring of thermal process signatures. However, due to the elaborate calibration effort and the lack of knowledge about the occurring spectral directional emissivity, only a few approaches attempt to measure real temperatures. In this study, to gain initial insights into occurring in the PBF-LB/M process, measurements on PBF-LB/M specimens and metal powder specimens were performed for higher temperatures up to T = 1290 °C by means of the emissivity measurement apparatus (EMMA) of the Center for Applied Energy Research (CAE, Wuerzburg, Germany). Also, measurements at ambient temperatures were performed with a suitable measurement setup. Two different materials—stainless steel 316L and aluminum AlSi10Mg—were examined. The investigated wavelength λ ranges from the visible range (λ-VIS = 0.40–0.75 µm) up to the infrared, λ = 20 µm. The influence of the following factors were investigated: azimuth angle φ, specimen temperature TS, surface texture as for PBF-LB/M surfaces with different scan angles α, and powder surfaces with different layer thicknesses t. T2 - Rapid.Tech 3D 2024 CY - Erfurt, Germany DA - 14.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Emissivity KW - Additive Manufacturing PY - 2024 AN - OPUS4-60148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzugan, J. A1 - Lucon, E. A1 - Koukolikova, M. A1 - Li, Y. A1 - Rzepa, S. A1 - Yasin, M.S. A1 - Shao, S. A1 - Shamsaei, N. A1 - Seifi, M. A1 - Lodeiro, M. A1 - Lefebvre, F. A1 - Mayer, U. A1 - Olbricht, J. A1 - Houska, M. A1 - Mentl, V. A1 - You, Z. T1 - ASTM interlaboratory study on tensile testing of AM deposited and wrought steel using miniature specimens N2 - An interlaboratory study, involving eigth international laboratories and coordinated by COMTES FHT (Czech Republic), was conducted to validate tensile measurements obtained using miniature specimens on additively manufactured (AM) components and artifacts. In addition to AM 316L stainless steel (316L SS), a wrought highstrength steel (34CrNiMo6V, equivalent to AISI 4340) was also used. Based on the results, a precision statement in accordance with ASTM E691 standard practice was developed, intended for inclusion in a proposed annex to the ASTM E8/E8M tension testing method. The primary outcomes of the study highlighted the agreement between yield and tensile strength measured from miniature and standard-sized tensile specimens. Furthermore, most tensile properties exhibited similar standard deviations, offering users insight into the efficacy of miniature specimen applications. KW - 316L stainless steel KW - Additive manufacturing KW - High-strength steel KW - Miniature specimens KW - Tensile tests PY - 2024 DO - https://doi.org/10.1016/j.tafmec.2024.104410 SN - 0167-8442 VL - 131 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Stark, T. A1 - Arduini, M. A1 - Manara, J. A1 - Altenburg, Simon T1 - Knowing the spectral directional emissivity of 316L and AlSi10Mg PBF-LB/M surfaces: Gamechanger for quantitative in situ monitoring N2 - For a deep process understanding of the laser powder bed fusion process (PBF-LB/M), recording of the occurring surface temperatures is of utmost interest and would help to pave the way for reliable process monitoring and quality assurance. A notable number of approaches for in-process monitoring of the PBF-LB/M process focus on the monitoring of thermal process signatures. However, due to the elaborate calibration effort and the lack of knowledge about the occurring spectral directional emissivity, only a few approaches attempt to measure real temperatures. In this study, to gain initial insights into occurring in the PBF-LB/M process, measurements on PBF-LB/M specimens and metal powder specimens were performed for higher temperatures up to T = 1290 °C by means of the emissivity measurement apparatus (EMMA) of the Center for Applied Energy Research (CAE, Wuerzburg, Germany). Also, measurements at ambient temperatures were performed with a suitable measurement setup. Two different materials—stainless steel 316L and aluminum AlSi10Mg—were examined. The investigated wavelength λ ranges from the visible range (λ-VIS= 0.40–0.75 µm) up to the infrared, λ = 20 µm. The influence of the following factors were investigated: azimuth angle φ, specimen temperature TS, surface texture as for PBF-LB/M surfaces with different scan angles α, and powder surfaces with different layer thicknesses t. T2 - Rapid.Tech 3D 2024 CY - Erfurt, Germany DA - 14.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Emissivity KW - Additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601471 DO - https://doi.org/10.1007/s40964-024-00665-2 SN - 2363-9520 SP - 1 EP - 10 PB - Springer CY - Cham, Switzerland AN - OPUS4-60147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Measurement of sub-4 nm particle emission from FFF-3D printing with the TSI Nano Enhancer and the Airmodus Particle Size Magnifier N2 - The emission of ultrafine particles from small desktop Fused Filament Fabrication (FFF) 3D printers has been frequently investigated in the past years. However, the vast majority of FFF emission and exposure studies have not considered the possible occurrence of particles below the typical detection limit of Condensation Particle Counters and could have systematically underestimated the total particle emission as well as the related exposure risks. Therefore, we comparatively measured particle number concentrations and size distributions of sub-4 nm particles with two commercially available diethylene glycol-based instruments – the TSI 3757 Nano Enhancer and the Airmodus A10 Particle Size Magnifier. Both instruments were evaluated for their suitability of measuring FFF-3D printing emissions in the sub-4 nm size range while operated as a particle counter or as a particle size spectrometer. For particle counting, both instruments match best when the Airmodus system was adjusted to a cut-off of 1.5 nm. For size spectroscopy, both instruments show limitations due to either the fast dynamics or rather low levels of particle emissions from FFF-3D printing in this range. The effects are discussed in detail in this article. The findings could be used to implement sub-4 nm particle measurement in future emission or exposure studies, but also for the development of standard test protocols for FFF-3D printing emissions. KW - Air pollution KW - Ultrafine particles KW - Sub-4nm particles KW - FFF-3D printing KW - Emission testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595952 DO - https://doi.org/10.1080/02786826.2024.2320430 SN - 0278-6826 VL - 58 IS - 6 SP - 644 EP - 656 PB - Taylor & Francis CY - London AN - OPUS4-59595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Design and implementation of a machine log for PBF-LB/M on basis of IoT communication architectures and an ETL pipeline N2 - AbstractPowder Bed Fusion with Laser Beam of Metals (PBF-LB/M) has gained more industrial relevance and already demonstrated applications at a small series scale. However, its widespread adoption in various use cases faces challenges due to the absence of interfaces to established Manufacturing Execution Systems (MES) that support customers in the predominantly data-driven quality assurance. Current state-of-the-art PBF-LB/M machines utilize communication architectures, such as OPC Unified Architecture (OPC UA), Message Queuing Telemetry Transport (MQTT) and Representational State Transfer Application Programming Interface (REST API). In the context of the Reference Architecture Model Industry 4.0 (RAMI 4.0) and the Internet of Things (IoT), the assets, particularly the physical PBF-LB/M machines, already have an integration layer implemented to communicate data such as process states or sensor values. Missing is an MES component acting as a communication and information layer. To address this gap, the proposed Extract Transform Load (ETL) pipeline aims to extract relevant data from the fabrication of each build cycle down to the level of scan vectors and additionally to register process signals. The suggested data schema for archiving each build cycle adheres to all terms defined by ISO/TC 261—Additive Manufacturing (AM). In relation to the measurement frequency, all data are reorganized into entities, such as the AM machine, build cycle, part, layer, and scan vector. These scan vectors are stored in a runtime-independent format, including all metadata, to be valid and traceable. The resulting machine log represents a comprehensive documentation of each build cycle, enabling data-driven quality assurance at process level. KW - FAIR data KW - Data-driven quality assurance KW - Laser powder bed fusion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601256 DO - https://doi.org/10.1007/s40964-024-00660-7 SN - 2363-9512 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Introduction to Residual Stress N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses (ECRS-11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - Mechanical Properties KW - X-ray diffraction PY - 2024 AN - OPUS4-60422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Peculiarities of the determination of residual stress in additively manufactured materials N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses CY - Prague, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Residual Stress KW - Diffraction PY - 2024 AN - OPUS4-60428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Werner, Tiago A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Microstructure Based Study on the Low Cycle Fatigue Behavior of Stainless Steel 316L manufactured by Laser Powder Bed Fusion N2 - Due to the advantages of Laser Powder Bed Fusion (PBF-LB), i.e., design freedom and the possibility to manufacture parts with filigree structures, and the considerable amount of knowledge available for 316L in its conventional variant, the mechanical behavior, and related microstructure-property relationships of PBF-LB/316L are increasingly subject of research. However, many aspects regarding the - application-relevant - mechanical behavior at high temperatures are not yet fully understood. Here, we present the results of an experimental study on the LCF behavior of PBF-LB/316L featuring a low defect population, which makes this study more microstructure-focused than most of the studies in the literature. The LCF tests were performed between room temperature (RT) and 600 °C. The mechanical response is characterized by strain-life curves, and hysteresis and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, and optical and electron microscopy. The PBF-LB/M/316L was heat treated at 450 °C for 4 h, and a hot‑rolled (HR) 316L variant with a fully recrystallized equiaxed microstructure was tested as a reference. Besides, selected investigations were performed after a subsequent heat treatment at 900 °C for 1 h. The PBF-LB/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. At the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The main damage mechanisms are multiple cracking at slip bands (RT) and intergranular cracking (600 °C). Neither the melt pool boundaries nor the gas porosity have a significant influence on the LCF damage mechanism. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial hardening followed by a continuous softening. The additional heat treatment at 900 °C for 1 h led to decreased cyclic stresses, and a longer fatigue life. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - AGIL KW - 316L KW - Microstructure KW - Low Cycle Fatigue KW - Heat Treatment KW - Laser Poeder Bed Fusion PY - 2024 AN - OPUS4-60432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Evans, alexander A1 - Serrano-Munoz, Itziar A1 - Sullivan, Romeo A1 - Farabhod, Lena A1 - Hoffmann, Michael T1 - How to experimentally determine residual stress in AM structures N2 - The experimental determination of residual stress becomes more complicated with increasing complexity of the structures investigated. Unlike the conventional and most of the additive manufacturing (AM) fabrication techniques, laser powder bed fusion (PBF-LB) allows the production of complex structures without any additional manufacturing step. However, due to the extremely localized melting and solidification, internal stress-induced deformation and cracks are often observed. In the best case, significant residual stress is retained in the final structures as a footprint of the internal stress during manufacturing. Here we report solutions to the most prevalent challenges when dealing with the diffraction-based determination of residual stress in AM structures, in particular the choice of the correct diffraction elastic constants. We show that for Nickel-based alloys, the diffraction elastic constants of AM material significantly deviate from their conventional counterparts. Furthermore, measurement strategies to overcome the hurdles appearing when applying diffraction-based techniques to complex-shaped lattice structures are presented: a) proper sample alignment within the beam, b) the proper determination of the residual stress field in a representative part of the structure (i.e., with an engineering meaning). Beyond the principal stress magnitude, the principal direcions of residual stress are discussed for different geometries and scan strategies, as they are relevent for failure criteria. We show that the RS in the lattice struts can be considered to be uniaxial and to follow the orientation of the strut, while the RS in the lattice knots is more hydrostatic. Additionally, we show that strain measurements in at least seven independent directions are necessary for the correct estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and to an informed choice on the possible strain field (i.e., reflecting the scan strategy). We finally show that if the most prominent direction is not measured, the error in the calculated stress magnitude increases in such a manner that no reliable assessment of RS state can be made. T2 - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - X-ray Computed Tomography KW - Additive Manufacturing KW - Lattice Structure KW - Inconel PY - 2024 AN - OPUS4-60423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Sprengel, Maximilian A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - Diffraction based residual stress analysis for laser powder bed fusion alloys N2 - Laser Powder Bed Fusion (PBF-LB/M) is a layer wise metal additive manufacturing (AM) technology, which enables significant advancements of component design, leading to potential efficiency and performance improvements. However, the thermal cycles inherent to the process comprising large localized thermal gradients and repeated melting and solidification cycles leads to the generation of high magnitude residual stresses. These residual stresses can be detrimental both during manufacturing of components and in subsequent application. Therefore, a deep understanding of the influence of process parameters on the residual stresses are crucial for efficient manufacturing and safe application. The experimental characterization of these residual stresses is therefore crucial and can provide a reliable baseline for simulations of both the process and applications. Diffraction-based methods for residual stress analysis using penetrating neutrons and high energy X-rays enable non-destructive spatially resolved characterization of both surface and bulk residual stresses. However, the unique microstructural features inherent to the process can challenge some of our assumptions when using these methods. These challenges include the determination of a stress-free reference, the use of correct elastic constants (both SCEC and DEC) and the influence of surface roughness, texture, and porosity on residual stresses. This presentation will detail recent insights and recommendations for the characterization of residual stresses in a range of PBF-LB/M metallic alloys (Fe, Ni, Al and Ti) T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2024 AN - OPUS4-60443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Kelleher, J. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - RS analysis in laser powder bed fused austenitic stainless steel N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - Laser Powder Bed Fusion KW - AGIL KW - 316L PY - 2024 AN - OPUS4-60445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Ávila Calderón, Luis Alexander A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Thermal history transfer from complex components to representative test specimens in laser powder bed fusion N2 - Additively manufactured components are characterized by heterogeneous mechanical properties due to variations of the microstructure, flaws and residual stresses resulting from the inhomogeneous fabrication process. The large number of influencing factors poses a further challenge in understanding the correlation between material properties, process parameters and component geometry. Therefore, the qualification of components based on witness specimens produced within the same job is questionable. This work aims to present a new strategy for the characterization of PBF-LB/M components based on representative specimens. The key assumption is the feasibility of a transfer of the thermal history from a component to a specimen. It is assumed that similar material properties are determined for components and specimens produced adopting a similar thermal history. After the definition of a region of interest in the component, a combination of thermal analyses by means of finite elements and in-situ experimental determination of the thermal history through infrared thermography is used to produce test coupons with a similar thermal history. The effectiveness of the procedure is demonstrated on a pressure vessel for applications in the chemical industry. KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Process simulation KW - Representative specimens PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602651 DO - https://doi.org/10.1007/s40964-024-00689-8 SN - 2363-9512 SN - 2363-9520 SP - 1 EP - 16 PB - Springer CY - Cham, Switzerland AN - OPUS4-60265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pallasch, Sebastian M. A1 - Bhosale, Manik A1 - Smales, Glen J. A1 - Schmidt, Caroline A1 - Riedel, Sibylle A1 - Zhao-Karger, Zhirong A1 - Esser, Birgit A1 - Dumele, Oliver T1 - Porous Azatruxene Covalent Organic Frameworks for Anion Insertion in Battery Cells N2 - Covalent organic frameworks (COFs) containing well-defined redox-active groups have become competitive materials for next-generation batteries. Although high potentials and rate performance can be expected, only a few examples of p-type COFs have been reported for charge storage to date with even fewer examples on the use of COFs in multivalent ion batteries. Herein, we report the synthesis of a p-type highly porous and crystalline azatruxene-based COF and its application as a positive electrode material in Li- and Mg-based batteries. When this material is used in Li-based half cells as a COF/carbon nanotube (CNT) electrode, a discharge potential of 3.9 V is obtained with discharge capacities of up to 70 mAh g−1 at a 2 C rate. In Mg batteries using a tetrakis(hexafluoroisopropyloxy)borate electrolyte, cycling proceeds with an averge discharge voltage of 2.9 V. Even at a fast current rate of 5 C, the capacity retention amounts to 84% over 1000 cycles. KW - COFs PY - 2024 DO - https://doi.org/10.1021/jacs.4c04044 VL - 146 IS - 25 SP - 17318 EP - 17324 PB - Journal of the American Chemical Society AN - OPUS4-60419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela A1 - Tabin, Jakub A1 - Kowalko, Jakub A1 - Roszak, Robert A1 - Ziolkowski, Grzegorz A1 - Ziegenhorn, Matthias A1 - Hilgenberg, Kai T1 - Comparative Analysis FFF vs. cold rolled 316L Samples N2 - This study provides insights into the properties of 316L stainless steel produced by additive manufacturing using fused filament fabrication (FFF). One key finding is particularly noteworthy: in significant contrast to cold-rolled 316L, FFF316L develops a pronounced martensite phase after fabrication. The comprehensive comparative analysis shows that FFF316L not only retains the ferrite volume content, but that this is also significantly influenced by the build-up direction. Despite the sintering process, which typically involves densification of the material, a pore volume fraction of 8.45 % remains, which influences the mechanical properties. Although FFF316L has lower elastic modulus and tensile strength values compared to cold-rolled 316L, its ductility is still competitive. The study further reveals that deformation-induced martensite forms at the intersections of the deformation twins and ferrite islands form at the grain boundaries during the compression and sintering phases. These findings highlight the challenges associated with FFF316L in specific application fields and signal the need to continue to carefully evaluate and improve the development of manufacturing technologies. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Fused Filament Fabrication KW - Computed Tomography KW - 316L Stainless Steel KW - Deformation-Induced Martensite PY - 2024 AN - OPUS4-60302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Towards component safety in laser powder bed fusion of metals N2 - The thermal history during additive manufacturing of complex components differs significantly from the thermal history of geometrically primitive test specimens. This can result in differences in properties that can lead to different material behavior. In this talk, the concept of representative test specimens is introduced, which enables the transfer of thermal histories from complex geometries to simple geometries, which can lead to better comparability of material properties. T2 - Additive Alliance CY - Hamburg, Germany DA - 05.03.2024 KW - Additive manufacturing KW - Heat accumulation KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens KW - Thermal history PY - 2024 AN - OPUS4-60263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Development of representative test specimens by thermal history transfer in laser powder bed fusion N2 - The use of components manufactured by laser powder bed fusion (PBF LB/M) and subjected to fatigue loading is still hampered by the uncertainty about the homogeneity of the process results. Numerous influencing factors including the component’s geometry contribute to the risk of process instability and resulting inhomogeneity of properties. This drastically limits the comparability of different built parts and requires expensive full component testing. The thermal history as the spatiotemporal temperature distribution has been identified as a major cause for flaw formation. Therefore, it can be hypothesized that a similar thermal history between components and test specimens enhances their comparability. Following this assumption, a strategy is developed to transfer the intrinsic preheating temperature as a measure of comparability of thermal histories from a region of interest of a complex component to a simple test specimen. This transfer concept has been successfully proved by the use of FEM-based macroscale thermal simulations, validated by calibrated infrared thermography. An adoption of the specimen manufacturing process by the adjustment of the inter layer times was established to manufacture specimens which are representatives of a specific region of a large-scale component in terms of the thermal history similarity criterion. The concept is schematically illustrated in Figure 1 and was demonstrated using a pressure vessel geometry from the chemical industry. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Thermal history KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens PY - 2024 AN - OPUS4-60260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernández García, María Amparo A1 - Rurack, Knut A1 - Bell, Jérémy A1 - Weller, Michael G. T1 - SAF-based optical biosensor with 3D-printed free-form optics for targeted explosives immuno-detection N2 - Guaranteeing safety and security of citizens requires a significant effort and innovative tools from national and international agencies and governments, especially when it comes to the field of explosives detection. The need to detect Improvised Explosive Devices (IEDs) and Home-made Explosives (HMEs) at a point of suspicion, has grown rapidly due to the ease with which the precursors can be obtained and the reagents synthesised. The limited availability of immunoanalytical tools for HME detection presents an opportunity for the development of new devices, which enable a rapid detection and recognise the target analyte with high specificity and sensitivity. In this work, we introduce an optical biosensor for highly specific and sensitive HME detection. The immunoassay system is placed in a hydrogel environment permeable to the analyte and transparent to light interrogating the fluorescently labelled antibodies. The readout of the immunoanalytical system is realized with Supercritical Angle Fluorescence (SAF), an advanced microscopy technique. To accomplish this, we made use of recent, commercial high resolution (< 22 µm) Liquid Crystal Display 3D printers to fabricate a parabolic optical element with high refractive index (RI>1.5) and transmission values (>90%) from photo-resin. Aiming at a new generation of sensors, which not only can meet the requirements of trace detection, but can also be used for substance identification, the combination of immunoanalytical recognition with SAF detection offers a modularity and versatility that is principally well suitable for the measurements of target analytes at trace levels. T2 - 8th International conference in Biosensing Technology CY - Seville, Spain DA - 12.05.2024 KW - 3D printing KW - Biosensor KW - Fluorescence KW - Explosives PY - 2024 AN - OPUS4-60561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubrho A1 - Pittner, Andreas A1 - Winterkorn, Rene A1 - Palumbo, Davide A1 - de Finis, Rosa A1 - Galietti, Umberto T1 - Thermographic Investigation of the Anisotropic Behaviour of Additively Manufactured AISI 316 Steel using DED-arc N2 - Additive manufacturing is one of the most promising techniques for industrial production and maintenance, but the specifics of the layered structure must be considered. The Direct Energy Deposition-Arc process enables relatively high deposition rates, which is favourable for larger components. For this study, specimens with different orientations were prepared from one AISI316 steel block – parallel and orthogonal to the deposition plane. Quasistatic tensile loading tests were carried out, monitored by an infrared camera. The obtained surface temperature maps revealed structural differences between both orientations. The consideration of surface temperature transients yields more details about the behaviour of the material under tensile loading than the conventional stress-strain-curve. These preliminary investigations were supplemented by thermographic fatigue trials. Although the anisotropy was also observed during fatigue loading the fatigue behaviour in general was the same, at least for both inspected specimens. The presented results demonstrate the abilities and the potential of thermographic techniques for tensile tests. T2 - 17th Quantitative Infrared Thermography Conference CY - Zagreb, Croatia DA - 01.07.2024 KW - Thermoelastic effect KW - Thermoplastic effect KW - Thermal stress analysis PY - 2024 AN - OPUS4-60574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diller, Johannes A1 - Siebert, Ludwig A1 - Winkler, Michael A1 - Siebert, Dorina A1 - Blankenhagen, Jakob A1 - Wenzler, David A1 - Radlbeck, Christina A1 - Mensinger, Martin T1 - An integrated approach for detecting and classifying pores and surface topology for fatigue assessment 316L manufactured by powder bed fusion of metals using a laser beam using μ$$ \mu $$CT and machine learning algorithms N2 - AbstractThis research aims to detect and analyze critical internal and surface defects in metal components manufactured by powder bed fusion of metals using a laser beam (PBF‐LB/M). The aim is to assess their impact on the fatigue behavior. Therefore, a combination of methods, including image processing of micro‐computed tomography (CT) scans, fatigue testing, and machine learning, was applied. A workflow was established to contribute to the nondestructive assessment of component quality and mechanical properties. Additionally, this study illustrates the application of machine learning to address a classification problem, specifically the categorization of pores into gas pores and lack of fusion pores. Although it was shown that internal defects exhibited a reduced impact on fatigue behavior compared with surface defects, it was noted that surface defects exert a higher influence on fatigue behavior. A machine learning algorithm was developed to predict the fatigue life using surface defect features as input parameters. KW - Fatigue KW - Machine learning KW - Micro-computed tomography KW - Powder bed fusion of metals using a laser beam KW - Quality assurance PY - 2024 DO - https://doi.org/10.1111/ffe.14375 SN - 8756-758X SP - 1 EP - 16 PB - John Wiley & Sons Ltd. AN - OPUS4-60593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Polte, Julian T1 - Advanced camera calibration for lens distortion correction in hybrid manufacturing processes: An exemplary application in laser powder bed fusion (PBF-LB/M) N2 - Hybrid additive manufacturing is becoming increasingly important in the field of additive manufacturing. Hybrid approaches combine at least two different manufacturing processes. The focus of this work is the build-up of geometries onto conventionally manufactured parts using Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M). The hybrid build-up requires a precise position detection system inside the PBF-LB/M machines to determine the exact position of the existing component. For this purpose, high-resolution camera systems can be utilized. However, the use of a camera system is associated with several challenges. The captured images are subject to various distortions of the optical path. Due to these distortions, it is not possible to use the images for measurements and, therefore, it is not possible to calculate the positions of objects. In this study a homography matrix is calculated to correct keystone distortion in the images. Different calibration patterns have been tested for the calculation of the homography matrix. The influence of the number of calibration points on the precision of position detection of objects is determined. Furthermore, the influence of an additional camera calibration by using ChArUco boards is evaluated. The result is a camera calibration workflow with associated calibration pattern for a precise position detection of parts inside PBF-LB/M machines allowing a hybrid build-up with minimum physical offset between base component and build-up. T2 - euspen’s 24th International Conference & Exhibition CY - Dublin, Ireland DA - 10.06.2024 KW - Additive manufacturing KW - Hybrid build-up KW - Position detection KW - Camera calibration PY - 2024 SP - 1 EP - 4 AN - OPUS4-60599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Benjamin, Merz A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Polte, Julian T1 - Advanced camera calibration for lens distortion correction in hybrid additive manufacturing processes N2 - Hybrid additive manufacturing is becoming increasingly important in the field of additive manufacturing. Hybrid approaches combine at least two different manufacturing processes. The focus of this work is the build-up of geometries onto conventionally manufactured parts using laser-based powder bed fusion of metals (PBF-LB/M). The hybrid build-up requires a precise position detection system inside the PBF-LB/M machines to determine the exact position of the existing component. For this purpose, high-resolution camera systems can be utilized. However, the use of a camera system is associated with several challenges. The captured images are subject to various distortions of the optical path. Due to these distortions, it is not possible to use the images for measurements and, therefore, it is not possible to calculate the positions of objects. In this study a homography matrix is calculated to correct keystone distortion in the images. Different calibration patterns have been tested for the calculation of the homography matrix. The influence of the number of calibration points on the precision of position detection of objects is determined. Furthermore, the influence of an additional camera calibration by using ChArUco boards is evaluated. The result is a camera calibration workflow with associated calibration pattern for a precise position detection of parts inside PBF-LB/M machines allowing a hybrid build-up with minimum physical offset between base component and build-up. T2 - euspen’s 24th International Conference & Exhibition CY - Dublin, Ireland DA - 10.06.2024 KW - Aditive Manufacturing KW - Hybrid build-up KW - Position detection KW - Camera calibration PY - 2024 AN - OPUS4-60600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with light into the volume of a ceramic powder compound, its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP), and other volumetric methods for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ICACC 2024 CY - Daytona Beach, Florida, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Çağtay A1 - Rethmeier, Michael A1 - Ulbricht, Alexander A1 - Bruno, Giovanni T1 - Additive Manufacturing of High Strength Al-Mg-Si Alloys with DED-Arc N2 - Direct energy deposition additive manufacturing technologies that utilize an electric arc have great potential for generating large volume metal components. However, selecting process parameters that yield the desired near net shape design and requested mechanical component behavior is not a trivial task due to the complex relationship between all process parameters and material characteristics. This presentation exemplifies the application of a newly developed solid welding wire doped with TiB to enhance grain refinement in the deposited metal for additive manufacturing based on DED-Arc of high-strength precipitation hardening AlMgSi-aluminum alloys. It is worth noting that the solid wire is the result of our preliminary metallurgical studies on grain refinement in aluminum weld metal. Consequently, research focuses on the correlation between process parameters and component quality to understand the underlying mechanisms. This is crucial for evaluating a robust process parameter space that yields component quality in line with corresponding standards which are mainly taken from welding technology. Specifically, we examine component quality by analyzing pore size and distribution, as well as grain morphology. To enhance the mechanical properties of the deposited metal, a post-weld heat treatment was conducted, comprising of solution treatment, quenching, and artificial aging. The study also evaluates the effects of various heat treatment strategies on the final mechanical properties of the material. To demonstrate the applicability of 3D metal printing of high-strength aluminium alloys, a more complex demonstrator was created. It has been shown that DED-Arc can produce high-volume aluminium parts with the same quality as the corresponding subtractive processing strategy. Additionally, the entire additive manufacturing chain has been digitally integrated, enabling traceability of all relevant process steps, which is essential for reliable subsequent quality assessment. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - DED-Arc KW - High-stength aluminium alloys KW - Grain refinement KW - Quality assurance PY - 2024 AN - OPUS4-60248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silvestro, L. A1 - Ruviaro, A. S. A1 - Lima, G. A1 - Durlo Tambara, Luis Urbano A1 - Feys, D. A1 - Kirchheim, A. P. T1 - Rotational rheometry test of Portland cement-based materials - A systematic literature review N2 - This study systematically reviews 62 papers on the use of rotational rheometry to assess the fresh state behavior of Portland cement-based materials. The research highlights the wide variation in test methods and aims to provide a comprehensive overview. Findings reveal that 50.0% of studies employed vane geometry, despite its limitations in providing transformation equations. Regarding dynamic shearing tests, 67.0% followed a consensus using a pre-shearing step and a step-wise routine with stabilization times ≥ 10 s. While the Bingham model is commonly used, the study emphasizes the importance of considering shear-thinning behavior in cementitious materials. Models like Herschel-Bulkley and modified Bingham may be more appropriate. This review offers insights into testing conditions for rotational rheometry of cementitious materials, serving as a foundation for future research in the field. KW - Review KW - Rheology KW - Rheometry KW - Rotational KW - Cement PY - 2024 DO - https://doi.org/10.1016/j.conbuildmat.2024.136667 SN - 0950-0618 VL - 432 SP - 1 EP - 14 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-60075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Winterkorn, René T1 - Towards arc welding reference data: Open Science laboratories at BAM N2 - As industries move for ever faster development and adoption cycles of emerging new technologies in the field of welding, the meticulous and longer-winded approach of the scientific research process can feel harder to integrate. To help bridge this gap and increase the speed, quality, and adoption rate of publicly funded research, the Bundesanstalt für Materialforschung und -prüfung (BAM) continues to work towards enabling scientists with direct access to necessary software tools and - in the future – highest quality welding research reference data to further foster collaborations. On the experimental side, the arc welding group at BAM division 9.3 “welding technologies” is continuing to expand and upgrade its capacities of robotic welding systems with integrated state of the art sensor technologies and software solutions. This allows all experiments to be recorded and measured in micro-millimeter accuracy and at sub-millisecond precision, including welding process data, complete spatial geometry and temperature measurements, process video recordings and more. The custom software-based solutions and interfaces allow scaling of the welding systems from large thick plate offshore applications to small additive repair weldments in wind turbine blades to multi-hour continuous weldments in additive manufacturing applications. In addition to the data gathered during the welding process itself, the relevant testing results and materials properties produced at BAM or externally can be integrated seamlessly. This allows detailed traceability of all results back to the actual welding process. Regardless of the scope and application, complete datasets can be made accessible for research or industry partners in the highest resolution based on the open source WelDX (welding data exchange) file format. Figure 1. Welding experiment representation including dynamic process data, cross-section imaging and hardness measurements from a single weldx file. The talk will give an overview of the experimental facilities and workflows as well as current software developments with a focus on research data quality assurance, traceability, and accessibility. Based on the integration into latest research trends and activities of the “welding technologies” division, the path to publishing reference datasets for arc welding process for various applications and materials is outlined and discussed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Arc welding KW - DED-arc KW - Research data KW - Reference data PY - 2024 AN - OPUS4-60249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -