TY - JOUR A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Heterodyne Eddy Current Testing Using Magnetoresistive Sensors for Additive Manufacturing Purposes N2 - In recent years additive manufacturing technologies have become widely popular. For complex functional components or low volume production of workpieces, laser powder bed fusion can be used. High safety requirements, e.g. in the aerospace sector, demand extensive quality control. Therefore, offline non-destructive testing methods like computed tomography are used after manufacturing. Recently, for enhanced profitability and practicality online non-destructive testing methods, like optical tomography have been developed. This paper discusses the applicability of eddy current testing with magnetoresistive sensors for laser powder bed fusion parts. For this purpose, high spatial resolution giant magnetoresistance arrays are utilized for testing in combination with a single wire excitation coil. A heterodyne principle minimizes metrology efforts. This principle is compared to conventional signal processing in an eddy current testing setup using an aluminum test sample with artificial surface defects. To evaluate the influence of the powder used in the manufacturing process on eddy current testing and vice versa, a laser powder bed fusion mock-up made from stainless steel powder (316L) is used with artificial surface defects down to 100 µm. This laser powder bed fusion specimen was then examined using eddy current testing and the underlying principles. KW - Eddy current testing KW - Heterodyning KW - Laser powder bed fusion KW - Giant magnetoresistance KW - Additive manufacturing KW - 316L PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506140 DO - https://doi.org/10.1109/JSEN.2020.2973547 SN - 1530-437X VL - 20 IS - 11 SP - 5793 EP - 5800 PB - IEEE AN - OPUS4-50614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schridewahn, S. A1 - Spranger, F. A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Laser Implantation of Niobium and Titanium-Based Particles on Hot Working Tool Surfaces for Improving the Tribological Performance within Hot Stamping N2 - Within the scope of this work, a laser implantation process has been used, in order to improve the tribological performance of hot stamping tools. This surface engineering Technology enables the generation of dome-shaped, elevated and highly wear resistant microfeatures on tool surfaces in consequence of a localized dispersing of hard ceramic particles via pulsed laser radiation. As a result, the topography and material properties of the tool and thus the tribological interactions at the blank-die interface are locally influenced. However, a suitable selection of hard ceramic particles is imperative for generating defect-free surface features with a high share of homogenously disturbed particles. For this purpose, different niobium (NbB2 and NbC) as well as titanium-based (TiB2 and TiC) materials were embedded on hot working tool specimens and subsequently analyzed with regard to their resulting shape and mechanical properties. Afterwards, modified pin-on-disk tests were carried out by using conventional and laser-implanted tool surfaces, in order to evaluate the wear and friction behavior of both tooling systems. KW - Surface modification KW - Triobology KW - Laser implantation PY - 2020 DO - https://doi.org/10.4028/www.scientific.net/DDF.404.117 SN - 1662-9507, VL - 404 SP - 117 EP - 123 PB - Trans Tech Publications Ltd. AN - OPUS4-53690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of additively manufactured stainless steel 316l: an experimental and numerical study N2 - This work aims for a yield function description of additively manufactured (AM) parts of stainless steel 316L at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity model at meso-scale. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - BAM, Berlin DA - 10.12.2020 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2020 AN - OPUS4-51941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - Additive Manufacturing: Opportunities and challenges for NDT N2 - Additive manufacturing processes are increasingly being used in industrial applications. Especially powder bed fusion processes are of high interest due to their capability to economically produce individual, highly complex and functionally integrated components in small batches. However, the quality assurance of these components remains a challenge. Internal defects and undesirable microstructures and surface conditions can deteriorate the mechanical properties. Especially for use in safety-relevant applications, new design and inspection concepts are needed that take these factors into account. This talk presents typical defects and microstructure phenomena resulting from the laser powder bed fusion process and identifies challenges and opportunities for non-destructive testing from a manufacturing engineering perspective. In particular, the possibility of a process-integrated quality control is shown based on current research results. T2 - The 13th International Symposium on NDT in Aerospace 2021 CY - Online meeting DA - 05.10.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ monitoring PY - 2021 AN - OPUS4-53484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carstensen, Niels T1 - Generation of Tribosystems by Additive Surface Treatment on Tool Steel Substrate N2 - Laser implantation aims at reducing friction and wear on highly stressed surfaces in forming processes. Especially the hot stamping process that is used as a resource efficient process for manufacturing geometrical complex and high-strength structures, exhibits severe wear and high friction during the forming operation. The laser implantation process addresses this problem by combining two different approaches (surface modification and surface structuring) in surface technology by creating elevated, highly wear-resistant micro-features to influence the tribological performance. Pure TiB2 implants have shown to reduce tool-sided wear significally and improve the part formability by reducing local necking in deep drawing tests. Within the scope of this work, TiB2-TiC and TiB2-TaC hard material mixtures are implanted on X38CrMoV5-3 hot work tool steel. The aim is to investigate how the implant material properties can be influenced by the application of different mixing ratios of hard material mixtures under the specific variation of the process parameters. Distinct implant formations are tested on a novel test apparatus to examine the influence on the tribological properties. From the analyses of the implant properties by hardness measurements, light microscopic images, EDX and XRD analyses process parameter ranges are identified to produce defect-free dome- and ring-shaped implants. The specific process parameters (pulse power, pulse duration, mixing ratio and coating thickness) can be used for the determination of the implant geometry (height, width and depth). The tribological tests exhibit improved friction and wear properties. Based on these results, a tribosystem manufactured by this additive surface treatment technology shows great potential to enhance the effectiveness of the hot stamping process. T2 - Friction 2021 CY - Sankt Augustin, Germany DA - 18.11.2021 KW - Laser implantation KW - Surface modification KW - Additive surface treatment KW - Hot stamping KW - Tool steel PY - 2021 AN - OPUS4-53809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2021 AN - OPUS4-53792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay T1 - WelDX – progress report on the welding data exchange format N2 - The presentation shows the current development status of the Welding Data Exchange (weldx) format based on the Advanced Scientific Data Format (ASDF). The use of a complete single pass arc welding experiment example stored in a single weldx file and validated against a predefined schema definition is presented. The example includes generic experimental metadata, the workpiece geometry and materials definition following associated standards, the weld process spatial movement description, the welding process parameter descriptions and welding process measurements. The inclusion of 3D scan data of the workpiece description is also included. The full code and data is available on GitHub: https://github.com/BAMWelDX/IIW2021_joint_intermediate_CXII T2 - IIW joint intermediate meeting Comm. I,IV,XII,SG212 2021 CY - Online meeting DA - 30.03.2021 KW - WelDX KW - Research data management KW - Open science KW - Arc welding KW - Digitalization PY - 2021 AN - OPUS4-52661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik T1 - Online ET with MR Sensor Arrays for LPBF Parts N2 - In this presentation we discuss the online monitoring of LPFB parts using eddy current testing with magenoresistive sensor arrays. The underlying principle, the developed hardware and the results of the firt online monitoring are described in the presentation. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 19.04.2021 KW - Eddy current testing KW - LPBF KW - GMR KW - SLM KW - Haynes282 KW - Additive manufacturing PY - 2021 AN - OPUS4-52700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ponader, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527581 DO - https://doi.org/10.3390/separations8050056 SN - 2297-8739 N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdel-Wakil, W. A1 - Fahmy, Alaa A1 - Kamoun, E. A1 - Hassan, W. A1 - Abdelhai, Q. A1 - Salama, T. T1 - A New Route for Synthesis of Polyurethanevinyl Acetate Acrylate Emulsions as Binders for Pigment Printing of Cotton Fabrics N2 - Herein, two polyurethane oligomers were successfully synthesized using a prepolymer mixing process. The prepolymers were synthesized based on the step-growth addition polymerization of polypropylene glycol, Methylene diphenyl diisocyanate and 2-hydroxyethyl methacrylate or 2-hydroxyethyl acrylate. Isopropanol was functioned as the isocyanate blocking agent. Thereafter, different terpolymer emulsions were prepared by the emulsion graft copolymerization with the vinyl acetate monomer in presence of 2-ethylhexyl acrylate as a vinyl monomer. The chemical structures of the synthesized oligomeric monomers were probed by FTIR spectroscopy and found to vary with the content of acrylic monomer used in the oligomer synthesis phase (i.e.hydroxyethyl acrylate or hydroxyethyl methacrylate). The topography, thermal stability, and particle size of terpolymers were investigated by SEM, TGA, and zeta potential, respectively. The TGA results demonstrated marked enhancement in thermal stability of the synthesized terpolymers up to ca. 600°C, which was concurrent with enhanced surface homogeneity and film properties as evidenced by the SEM images. These terpolymers showed also property enhancement as binders for textile pigment printing in terms of rubbing resistance, color strength and fastness to washing when compared to the commercial binders. These judgments would provide a new competent synthesis route by introducing polyurethane acetate vinyl acrylate as the binder for use in pigment printing of cotton fabrics. KW - Vinyl monomer KW - Polyurethane acetate vinyl acrylate KW - Surface coating KW - Terpolymer KW - Textile binder PY - 2020 DO - https://doi.org/10.21608/ejchem.2020.21712.2292 VL - 63 IS - 3 SP - 1063 EP - 1073 AN - OPUS4-52300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Short fatigue crack propagation in additively manufactured stainless steel 316L N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - AM KW - Cyclic R-Curve KW - Fatigue Crack Propagation PY - 2021 AN - OPUS4-52587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of LPBF 316L: a modeling approach N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations relative to the build plate. Dynamic Young's modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography, and texture analysis with electron backscatter diffraction (EBSD). A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 20.04.2021 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2021 AN - OPUS4-52603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ponader, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as new supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 minute. Due to the glass material's excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Glass KW - Purification KW - Antibodies KW - Solid support KW - HPLC KW - FPLC KW - Separation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529117 DO - https://doi.org/10.20944/preprints202103.0298.v1 SN - 2310-287X N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-52911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agea Blanco, Boris A1 - Walzel, S. A1 - Chi, J. A1 - Lüchtenborg, J. T1 - Making Binder Jetting Really Work for Technical Ceramics - Additive Manufacturing of Technical Ceramics N2 - As an alternative shaping method to the traditionally used processes, additive manufacturing (AM) can produce economical ceramic components in small lot sizes and/or with complex geometries. Powder-based additive manufacturing processes like binder jetting are popular in the field of metal AM. One reason is the increased productivity compared to other AM technologies. For ceramic materials, powder-based AM technologies result in porous ceramic parts, provided they are not infiltrated. CerAMing GmbH unites the advantages of powder-based processes with the production of dense ceramic by means of the Layerwise Slurry Deposition. By using a suspension, a high packing density of the powder bed is achieved which leads to high green body densities. Due to this advantage the approach overcomes the problems of other powder-based AM technologies. Furthermore, a very economical debinding time allows the production of parts with high wall thicknesses. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise Slurry Deposition KW - Lithography-based technologies KW - Technical Ceramics PY - 2021 SP - 49 EP - 52 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-52948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Investigation of the thermal and tribological performance of localized laser dispersed tool surfaces under hot stamping conditions N2 - In the automotive industry, hot stamping has been established as a key technology for manufacturing safety-relevant car body components with high strength-to-weight ratio. However, hot stamping tools are stressed by cyclic thermo-mechanical loads, which leads to severe wear and high friction during the forming operation. Consequently, the quality of the parts, the durability of the tools and the efficiency of the process are negatively affected. Within the scope of this work, a promising approach named laser implantation process has been investigated for improving the tribological behavior of hot stamping tools. This technique enables the fabrication of highly wear resistant, separated and elevated micro-features by embedding hard ceramic particles into the tool via pulsed laser radiation. Hence, highly stressed tool areas can be modified, which influences the thermal and tribological interactions at the blank-die interface. To clarify these cause-effect relations, numerical simulations, quenching tests as well as tribological investigations have been conducted. In this context, laser-implanted tools reveal a significantly improved tribological performance while offering the possibility to adjust the thermal properties within hot stamping. Based on these results, a tailored tool modification can be pursued in future research work, in order to enhance the effectiveness of hot stamping tooling systems. KW - Hot stamping KW - Laser Implantation KW - Surface structuring KW - Wear KW - Friction PY - 2021 DO - https://doi.org/10.1016/j.wear.2021.203694 VL - 476 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-52988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, Andreas A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544921 DO - https://doi.org/10.1016/j.prostr.2022.03.009 SN - 2452-3216 VL - 38 SP - 77 EP - 83 PB - Elsevier B.V. AN - OPUS4-54492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additive manufacturing (AM) is becoming increasingly important in engineering applications due to the possibility of producing components with a high geometrical complexity allowing for optimized forms with respect to the in-service functionality. Despite the promising potential, AM components are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-properties-performance relationship. This work aims at providing a full characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. To this purpose, a set of specimens has been produced by laser powder bed fusion (L-PBF) and subsequently heat treated at 900 °C for 1 hour for complete stress relief, whereas a second set of specimens has been machined out of hot-rolled plates. Low cycle fatigue (LCF) and high cycle fatigue (HCF) tests have been conducted for characterizing the fatigue behavior. The L-PBF material had a higher fatigue limit and better finite life performance compared to wrought material. Both, LCF and HCF-testing revealed an extensive cyclic softening. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive manufacturing KW - L-PBF KW - 316L KW - Fatigue KW - LCF KW - HCF PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544952 DO - https://doi.org/10.1016/j.prostr.2022.03.056 SN - 2452-3216 VL - 38 SP - 554 EP - 563 PB - Elsevier B.V. AN - OPUS4-54495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis of AM materials at BAM N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Chalmers University and Centre for Additive Manufacture (CAM2) CY - Gothenburg, Sweden DA - 19.05.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction KW - X-ray refraction PY - 2022 AN - OPUS4-55019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay T1 - Multi-Layer welding data analysis and open data approach using WelDX N2 - The talk motivates and introduces the WelDX project and the proposed solutions for current challenges in the field of research data management and Open Science practices in welding research. Using an exemplary welding dataset based on the joint and welding process design of offshore structures, advanced data fusion and analysis capabilities are demonstrated. The dataset shown consists of a complex welding sequence covering multiple weld layers with varying process parameters and adaptive weaving motions to cover manufacturing tolerances. In the presentation, an interactive exploration of the dataset contents in the spatial domain is presented. Furthermore, transformation between spatial and time domain of the data is demonstrated. In addition to data gathered during the welding process, the integration of downstream testing data and results is also explained. For demonstration, integration of weld seam cross section images and Vickers hardness mapping test results into the dataset are explained an demonstrated. The testing data is set into context with the welding process information. Finally, implications for advancements in research data management for WAAM and AI applications are discussed. T2 - The 75th IIW Annual Assembly and International Conference CY - Tokyo, Japan DA - 17.07.2022 KW - WelDX KW - Research data management KW - Open science KW - Arc welding KW - Digital transformation PY - 2022 AN - OPUS4-55354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Laser Powder Bed Fusion (L-PBF) allow the fabrication of lightweight near net shape AlSi10Mg components attractive to the aerospace, automotive, biomedical and military industries. During the build-up process, high cooling rates occur. Thus, L-PBF AlSi10Mg alloys exhibit a Si-nanostructure in the as-built condition, which leads to superior mechanical properties compared to conventional cast materials. At the same time, such high thermal gradients generally involve a deleterious residual stress (RS) state that needs to be assessed during the design process, before placing a component in service. To this purpose post-process heat treatments are commonly performed to relieve detrimental RS. In this contribution two low-temperature stress-relief heat treatments (SRHT) are studied and compared with the as-built state: a SRHT at 265°C for 1 hour and a SRHT at 300°C for 2 hours. At these temperatures microstructural changes occur. In the as-built state, Si atoms are supersaturated in the α-aluminium matrix, which is enveloped by a eutectic Si-network. At 265°C the Si precipitation from the matrix to the pre-existing network is triggered. Thereafter, above 295°C the fragmentation and spheroidization of the Si branches takes place, presumably by Al–Si interdiffusion. After 2 hours the original eutectic network is completely replaced by uniformly distributed blocky particles. The effect of the heat and the microstructure modification on the RS state and the fatigue properties is investigated. Energy dispersive x-ray and neutron diffraction are combined to investigate the near-surface and bulk RS state of a L-PBF AlSi10Mg material. Differences in the endurance limit are evaluated experimentally by high cycle fatigue (HCF) tests and cyclic R-curve determination. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - AlSi10Mg KW - Fatigue KW - Neutron diffraction KW - X-ray diffraction PY - 2022 AN - OPUS4-55090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gupta, P. A1 - Karnaushenko, D. D. A1 - Becker, C. A1 - Okur, I. E. A1 - Melzer, Michael A1 - Özer, B. A1 - Schmidt, O. G. A1 - Karnaushenko, D. T1 - Large Scale Exchange Coupled Metallic Multilayers by Roll-to-Roll (R2R) Process for Advanced Printed Magnetoelectronics N2 - Till now application of printed magnetoelectronics is hindered by lack of large area exchange coupled metallic multilayers required to produce printable magneto-sensory inks. Large-scale roll-to-roll (R2R) fabrication process is an attractive approach owing to its capabilities for high volume, high throughput, and large area manufacturing. Precise and high performance R2R sputtering technology is developed to fabricate large area giant magnetoresistive (GMR) thin-films stacks that contain 30 metallic bilayers prepared by continuous R2R sputtering of Co and Cu sequential on a hundred meters long polyethylene terephthalate (PET) web. The R2R sputtered Co/Cu multilayer on a 0.2 × 100 m2 PET web exhibits a GMR ratio of ≈40% achieving the largest area exchange coupled room temperature magneto-sensitive system demonstrated to date. The prepared GMR thin-film is converted to magnetosensitive ink that enables printing of magnetic sensors with high performance in a cost-efficient way, which promotes integration with printed electronics. An average GMR ratio of ≈18% is obtained for 370 printed magnetic sensors. The realized precise R2R sputtering approach can also be extended to a wide range of hybrid thin-film material systems opening up a path for new functional inks applied with printing technologies. KW - Printed Electronics KW - Flexible Magnetic Sensors KW - Roll-to-Roll Processing KW - Functional Materials KW - Upscaling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552344 DO - https://doi.org/10.1002/admt.202200190 SN - 2365-709X SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim, Deutschland AN - OPUS4-55234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long T1 - Proposal of a standard test method for the quantification of particulate matter during 3D printing and the systematic ranking of filament materials N2 - The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (1E9 ≤ TP ≤ 1E13), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards. T2 - 11th International Aerosol Conference CY - Athens, Greece DA - 04.09.2022 KW - Ultrafine particles KW - FFF-3D-Printer KW - Indoor emission KW - Emission test chamber KW - Test method KW - Exposure risk PY - 2022 AN - OPUS4-55666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Junge, P. A1 - Stargardt, Patrick A1 - Kober, D. A1 - Greinacher, M. A1 - Rupprecht, C. T1 - Thermally Sprayed Al2O3 Ceramic Coatings for Electrical Insulation Applications N2 - Thermal spraying enables a fast and propelling way to additively deposit various ceramics as electric insulators, which are used in conditions where polymers are not suitable. Alumina (Al2O3) is among the most employed materials in the coating industry since it exhibits good dielectric properties, high hardness, high melting point while still being cost-effective. Various parameters (e.g. feedstock type, plasma gas mixture, plasma power) significantly influence the resulting coating in terms of microstructure, porosity, crystallinity, and degree of un-or molten particles. As a consequence, these parameters need to be investigated to estimate the impact on the electrical insulating properties of thermally sprayed alumina. This study focuses on the development of a novel electric insulation coating from Al2O3 feedstock powders deposited via atmospheric plasma spray (APS). The microstructure, porosity, and corresponding crystallographic phases have been analyzed with optical microscopy, XRD, and SEM images. To achieve an understanding of the parameters influencing the electrical insulation performance of the manufactured coatings, an in-depth analysis of the fundamental dielectric parameters e.g., DC resistance, breakdown strength, dielectric loss tangent, permittivity is presented. T2 - International Thermal Spray Conference and Exposition 2022 CY - Vienna, Austria DA - 04.05.2022 KW - Thermal Spray KW - Alumina KW - Dielectric properties PY - 2022 SP - 1 EP - 8 AN - OPUS4-55821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Hygienic assessment of SLM-printed stainless steel N2 - Elektrochemische Messungen zur hygienischen Bewertung additiv gefertigter Bauteile werden diskutiert. Die Bewertung und Details des Werkstoffs werden beschrieben, Anwendungsbeispiele gezeigt. T2 - Kormat 2022 CY - Online meeting DA - 26.04.2022 KW - Korrosion KW - Trinkwasser KW - Hygienische Bewertung KW - Additive Fertigung PY - 2022 AN - OPUS4-54709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael A1 - Lichtenthäler, F. A1 - Stark, M. T1 - Multiple-wire submerged arc welding of high-strength fine-grained steels N2 - Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding processes for welding high-strength fine-grained steels. Excessive heat input is one of the main causes for microstructural zones with deteriorated mechanical properties of the welded joint, such as a reduced notched impact strength and a lower structural robustness. A process variant is proposed which reduces the weld volume as well as the heat input by adjusting the welding wire configuration as well as the energetic parameters of the arcs, while retaining the advantages of multiwire submerged arc welding such as high process stability and production speed. KW - Submerged arc welding KW - High-strength fine-grained steels KW - Mechanical properties of the joints KW - Energy parameters of the arc PY - 2022 DO - https://doi.org/10.37434/tpwj2022.01.02 SN - 0957-798X IS - 1 SP - 9 EP - 13 PB - Paton Publishing House CY - Kiev AN - OPUS4-54701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M ) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring) but not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - LiM Conference 2023 - Lasers in Manufacturing CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - High temperature alloys KW - Additive Manufacturing KW - PBF-LB/M PY - 2023 AN - OPUS4-57947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schumacher, David A1 - Waske, Anja T1 - XCT data of metallic feedstock powder with pore size analysis N2 - X-Ray computed tomography (XCT) scan of 11 individual metallic powder particles, made of (Mn,Fe)2(P,Si) alloy. The data set consists of 4 single XCT scans which have been stitched together [3] after reconstruction. The powder material is an (Mn,Fe)2(P,Si) alloy with an average density of 6.4 g/cm³. The particle size range is about 100 - 150 µm with equivalent pore diameters up to 75 µm. The powder and the metallic alloy are described in detail in [1, 2]. KW - Additive Manufacturing KW - Feedstock powder KW - Powder Characterization KW - X-Ray Computed Tomography PY - 2022 DO - https://doi.org/10.5281/zenodo.5796487 PB - Zenodo CY - Geneva AN - OPUS4-55556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D Imaging and residual stress analysis of additively manufactured materials N2 - The focus of the presentation focus will be on 3D imaging by means of X-ray Computed Tomography (XCT) at the lab and at synchrotron, and the non-destructive residual stress (RS) characterization by diffraction of additively manufactured (AM) materials in BAM (Berlin, Germany). The manufacturing defects and high RS are inherent of AM techniques and affect structural integrity of the components. Using XCT the defects size and shape distribution as well as geometrical deviations can be characterized, allowing the further optimization of the manufacturing process. Diffraction-based RS analysis methods using neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk RS in complex components and track their changes following applied thermal or mechanical loads. T2 - The International Symposium on Nondestructive Characterization of Materials 2023 CY - Zurich, Switzerland DA - 15.08.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing N2 - Synchrotron X-ray computed tomography (SXCT) at BAMline has been paired with in-situ tensile loading to monitor damage evolution in LPBF Metal Matrix Composite (MMC) 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing of the material leads formation to different categories of Zr-rich inclusions, precipitates and defects. In-situ SXCT test disclosed the critical role of the pre-cracks in the reinforcement phases in the failure mechanisms of LPBF MMC. The damage was initiated from lack-of-fusion defects and cracks propagated through coalescence with other defects. T2 - HZB Uer Meeting 2023 CY - Berlin, Germany DA - 22.06.23 KW - Additive manufacturing KW - BAMline KW - Synchrotron X-ray computed tomography KW - in-situ PY - 2023 AN - OPUS4-57801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bergant, M. A1 - Larrosa, N. A1 - Yawny, A. A1 - Madia, Mauro T1 - Short crack growth model for the evaluation of the fatigue strength of WAAM Ti-6Al-4V alloy containing pore-type defects N2 - The role of defects in the fatigue strength of Wire Arc Additively Manufactured (WAAMed) Ti-6Al-4V is analysed by means of the IBESS model, a fracture mechanics short crack growth approach based on the cyclic R-curve. Pores and crack-like defects are analysed. Estimations of the role of pore shape and size agree well with published fatigue data of WAAM Ti-6Al-4V with pores. The model is also used to explain the effect of fabrication defects on the scatter of experimental data. This demonstrates that short crack growth models represent a suitable engineering tool for the fatigue assessment of defective AM materials. KW - WAAM Ti-6Al-4V KW - Cyclic R-curve KW - IBESS model for short cracks KW - Kitagawa-Takahashi (K-T) diagram PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2023.109467 SN - 0013-7944 VL - 289 SP - 1 EP - 21 PB - Elsevier Ltd. AN - OPUS4-57963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Geometrical features and mechanical properties of the sheet-based gyroid scaffolds with functionally graded porosity manufactured by electron beam melting N2 - Functionally graded porous scaffolds (FGPS) constructed with pores of different size arranged as spatially continuous structure based on sheet-based gyroid with three different scaling factors of 0.05, 0.1 and 0.2 were produced by electron beam powder bed fusion. The pore dimensions of the obtained scaffolds satisfy the values required for optimal bone tissue ingrowth. Agglomerates of residual powder were found inside all structures, which required post-manufacturing treatment. Using X-ray Computed Tomography powder agglomerations were visualized and average wall thickness, wall-to-wall distances, micro- and macro-porosities were evaluated. The initial cleaning by powder recovery system (PRS) was insufficient for complete powder removal. Additional treatment by dry ultrasonic vibration (USV) was applied and was found successful for gyroids with the scaling factors of 0.05 and 0.1. Mechanical properties of the samples, including quasi-elastic gradients and first maximum compressive strengths of the structures before and after USV were evaluated to prove that additional treatment does not produce structural damage. The estimated quasi-elastic gradients for gyroids with different scaling factors lie in a range between 2.5 and 2.9 GPa, while the first maximum compressive strength vary from 52.5 for to 59.8 MPa, compressive offset stress vary from 46.2 for to 53.2 MPa. KW - Additive manufacturing KW - Electron beam KW - Powder bed fusion KW - Triply periodic minimal surfaces KW - Functionally graded porous scaffolds KW - X-ray computed tomography PY - 2023 DO - https://doi.org/10.1016/j.mtcomm.2023.106410 SN - 2352-4928 VL - 35 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-57682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A.-F. A1 - Fain, J. A1 - Meinel, Dietmar A1 - Tsamos, Athanasios A1 - Léonard, F. A1 - Lécuelle, B. A1 - Djemaï, M. T1 - In Vivo Bone Progression in and around Lattice Implants Additively Manufactured with a New Titanium Alloy N2 - The osseointegration in/around additively manufactured (AM) lattice structures of a new titanium alloy, Ti–19Nb–14Zr, was evaluated. Different lattices with increasingly high sidewalls gradually closing them were manufactured and implanted in sheep. After removal, the bone–interface implant (BII) and bone–implant contact (BIC) were studied from 3D X-ray computed tomography images. Measured BII of less than 10 µm and BIC of 95% are evidence of excellent osseointegration. Since AMnaturally leads to a high-roughness surface finish, the wettability of the implant is increased. The new alloy possesses an increased affinity to the bone. The lattice provides crevices in which the biological tissue can jump in and cling. The combination of these factors is pushing ossification beyond its natural limits. Therefore, the quality and speed of the ossification and osseointegration in/around these Ti–19Nb–14Zr laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. Thus, this new titanium alloy and such laterally closed lattice structures are appropriate candidates to be implemented in a new generation of implants. KW - Osseointegration KW - X-ray computed tomography KW - Additive manufacturing KW - Machine learning segmentation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577066 DO - https://doi.org/10.3390/app13127282 VL - 13 IS - 12 SP - 1 EP - 18 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Applications of x-ray computed tomography in material science N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field material characterization by X-ray imaging is presented. The principle of X-ray Computed Tomography (XCT) is explained. The multiple examples of application of quantitative analysis by XCT are reported, such as additive manufacturing, Li-ion battery, concrete research. T2 - Lecture for PhD students at Politecnico di Torino CY - Turin, Italy DA - 14.03.2024 KW - X-ray computed tomography KW - Additive manufacturing PY - 2024 AN - OPUS4-59689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80 – Microstructure and Solidification Behaviour Modelling N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance industrial use of these techniques. An analytical model based on reaction-diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil-Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid-liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. Differential scanning calorimeter is used to measure the heat flow during the solid-liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser metal deposition KW - Solidification behaviour KW - Analytical model KW - Nickel-based superalloy PY - 2023 SP - 1 EP - 10 AN - OPUS4-58612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drendel, Jan A1 - Logvinov, Ruslan A1 - Heinrichsdorff, Frank A1 - Hilgenberg, Kai T1 - Simulation-based controlling of local surface temperature in laser powder bed fusion using the process laser N2 - State-of-the-art laser powder bed fusion (PBF-LB/M) machines allow pre-heating of the substrate plate to reduce stress and improve part quality. However, two major issues have been shown in the past: First, with increasing build height the apparent pre-heat temperature at the surface can deviate drastically from the nominal pre-heat temperature in the substrate plate. Second, even within a single layer the local surface pre-heat temperature can show large gradients due to thermal bottlenecks in the part geometry underneath the top surface. Both lead to unwanted changes in microstructure or defects in the final parts. In this study, a first attempt is taken to show the feasibility of pre-heating the top surface with the onboard laser beam to overcome the mentioned issues. A single layer of a group of three parts built from IN718 to a height of 33.5 mm is pre-heated in a commercially available PBF-LB/M machine to an average steady state surface temperature of 200 °C using the onboard laser beam. The parts are continuously heated, omitting powder deposition and melting step. Temperatures are measured by thermocouples underneath the surface. The experiments are supported by a thermal finite element (FE) model that predicts the temperature field in the parts. When heating the parts uniformly with the laser beam, differences in surface temperatures as large as 170 K are observed. To overcome this inhomogeneity, the heat flux supplied by the laser beam is modulated. An optimized, spatial heat flow distribution is provided by the thermal FE model and translated into a scan pattern that reproduces the optimized heat distribution on the PBF-LB/M machine by locally modulating hatch distance and scan velocity. This successfully reduces the differences in surface temperature to 20 K. Thermographic imaging shows that a homogeneous surface temperature can be achieved despite the localized heat input by the beam. The potential for industrial application of the optimized laser-heating technique is discussed. KW - Additive Manufacturing KW - Simulation KW - Surface temperature KW - Laser powder bed fusion PY - 2023 DO - https://doi.org/10.1016/j.addma.2023.103854 SN - 2214-8604 VL - 78 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-58825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 1st Annual Assembly and Conference of The Welding Federation of Africa (TWF-Africa) CY - Cairo, Egypt DA - 14.03.2023 KW - Laser beam welding KW - Melt pool dinamics PY - 2023 AN - OPUS4-58695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - In-situ hot isostatic pressing combined with x-ray imaging and diffraction of laser powder bed fusion ti-6al-4v N2 - Hot Isostatic Pressing (HIP) is often introduced to tackle the porosity issue in additively manufactured (AM) materials. For instance, HIP post-processing is recommended to improve fatigue resistance of Laser powder bed fusion (PBF-LB) manufactured parts [1, 2]. Even though HIP cannot completely remove porosity, it significantly decreases the defect population and its average size below the critical threshold value leading to early crack initiation. In the present study, in-situ investigation of HIP procedure of PBF-LB Ti-6Al-4V parts was carried out to gain further insights into the densification mechanism occurring during HIP. The in-situ observations at high pressure and high temperature are uniquely possible at the PSICHE beamline of the Soleil synchrotron (France), thanks to the Ultrafast Tomography on a Paris-Edinburgh Cell (UToPEC) and the combination of the fast phase-contrast tomography and energy-dispersive diffraction [3, 4]. A detailed methodology was developed to ensure that the correct pressure and temperature were maintained during the experiments. The results allowed an estimation of the global dentification rate during HIP of PBF-LB Ti-Al-4V material, as well as a detailed quantitative characterization of the influence of pore size and shape on the densification process, thereby understanding the effectiveness of HIP process on different pore categories. After 20 mins, 75% of porosity can be considered as closed or has size below the resolution of the XCT reconstruction. We also observed that the smallest defects showed higher densification rate, while the defect shape did not have significant effect on such rate. The current development of in-situ HIP experiment allows experimental quantification and validation of the simulation work. Ultimately it paves the road to tailoring the HIP procedure for different materials depending on the porosity and microstructure. T2 - AAMS 2023 CY - Madrid, Spain DA - 26.09.23 KW - Additive manufacturing KW - HIP KW - X-ray computed tomography PY - 2023 AN - OPUS4-58482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin A1 - Hilgenberg, Kai A1 - Hellfritz, Benjamin A1 - Löffler, Frank T1 - Digitisation of the quality infrastructure - using the example of additive manufacturing N2 - Rapidly advancing technologies and progressive digitisation are posing challenges to the established quality infrastructure (QI). In response, the key stakeholders of the German QI established the initiative QI-Digital aimed at developing new solutions for modern quality assurance. One of the central use cases herein is quality assurance for additive manufacturing, in which a fully interlinked additive manufacturing process chain is established. The intention is to collect and process data from each production step, allowing for a comprehensive digital view of the physical material flow. Within this process chain, prototypes of digital QI tools like machine readable standards and digital quality certificates are being demonstrated, tested, and evolved. This is complemented by research on the process level, comprising the evaluation and refinement of methods for in-situ and ex-situ quality assurance, as well as algorithms for registration, reduction, and analysis of process data. This paper presents the status, goals, and vision for the QI-Digital use case additive manufacturing. T2 - Metal Additive Manufacturing Conference 2023 CY - Wien, Austria DA - 17.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 SP - 96 EP - 104 CY - Wien AN - OPUS4-58628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Digitisation of the quality infrastructure - Using the example of additive manufacturing N2 - Rapidly advancing technologies and progressive digitisation are posing challenges to the established quality infrastructure (QI). In response, the key stakeholders of the German QI established the initiative QI-Digital aimed at developing new solutions for modern quality assurance. One of the central use cases herein is quality assurance for additive manufacturing, in which a fully interlinked additive manufacturing process chain is established. The intention is to collect and process data from each production step, allowing for a comprehensive digital view of the physical material flow. Within this process chain, prototypes of digital QI tools like machine readable standards and digital quality certificates are being demonstrated, tested, and evolved. This is complemented by research on the process level, comprising the evaluation and refinement of methods for in-situ and ex-situ quality assurance, as well as algorithms for registration, reduction, and analysis of process data. This paper presents the status, goals, and vision for the QI-Digital use case additive manufacturing. T2 - Metal Additive Manufacturing Conference 2023 CY - Vienna, Austria DA - 17.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 AN - OPUS4-58629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Integration of the whole digital chain in a unique file for PBF-LB/M: practical implementation within a digital thread and its advantages N2 - The industrialization of AM is only possible by creating synergy with the tools of Industry 4.0. The system technology of Powder Bed Fusion with Laser beam of Metals (PBF-LB/M) reached a level of high performance in terms of process stability and material spectrum in the past years. However, the digital process chain, starting from CAD via CAM and plant-specific compila-tion of the manufacturing file exhibits media disruptions. The consequence is a loss of metadata. A uniform data scheme of simulation for Design for Additive Manufacturing (DfAM), the PBF-LB/M process itself and quality assurance is currently not realized within industry. There is no entity in the common data flows of the process chains, that enables the integration of these functionalities. As part of the creation of a digital quality infrastructure in the QI-Digital pro-ject, an integration of the CAD/CAM chain is being established. The outcome is a file in an advanced commercially available format which includes all simula-tions and manufacturing instructions. The information depth of this file extends to the level of the scan vectors and allows the automatic optimization and holis-tic documentation. In addition, the KPI for the economic analysis are generated by compressing information into a unique file combined with the application of a digital twin. The implementation and advantages of this solution are demon-strated in a case study on a multi-laser PBF-LB/M system. A build job contain-ing a challenging geometry is thermally simulated, optimized, and manufac-tured. To verify its suitability for an Additive Manufacturing Service Platform (AMSP), the identical production file is transferred to a PBF-LB/M system of another manufacturer. Finally, the achieved quality level of the build job is evaluated via 3D scanning. This evaluation is carried out in the identical entity of the production file to highlight the versatility of this format and to integrate quality assurance data. T2 - Additive Manufacturing for Products and Applications 2023 CY - Lucerne, Switzerland DA - 11.09.2023 KW - Laser Powder Bed Fusion KW - Digital Twin KW - Data Integrity KW - Process Chain Integration KW - Computer Aided Manufacturing PY - 2023 SN - 978-3-031-42982-8 DO - https://doi.org/10.1007/978-3-031-42983-5_7 SN - 2730-9576 VL - 3 SP - 91 EP - 114 PB - Springer CY - Cham AN - OPUS4-58363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Oster, Simon A1 - Uhlmann, E. A1 - Polte, J. A1 - Gordei, A. A1 - Hilgenberg, Kai T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring), which have not been researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - Optical tomography KW - Melt-pool-monitoring KW - Laser powder bed fusion KW - Haynes 282 KW - Additive Manufacturing PY - 2023 UR - https://www.wlt.de/lim2023-proceedings/system-engineering-and-process-control SP - 1 EP - 10 AN - OPUS4-58466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis for AM Materials N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Integrated Additive Manufacturing center, Politecnico Torino CY - Turin, Italy DA - 14.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction PY - 2023 AN - OPUS4-57047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, M. A1 - Schlingmann, T. A1 - Schmidt, J. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Klöden, B. T1 - A Round Robin Test To Investigate The Printing Quality Of PBF LB/M Processed AlSi10Mg N2 - When it comes to higher accuracies, new technologies and real applications in additive manufacturing, there is one topic which cannot be avoided: The material response on the chosen processing parameters and its agreement and correspondence with literature data of the wrought material grade counterpart. In industrial Additive Manufacturing (AM) standards in terms of printing parameters, protection gas atmospheres or powder handling instructions are not obligatory. Therefore, the question must be answered whether the AM process is reproducible and reliable over different printing companies. This was the motivation to realize a round robin test between 8 European printing companies and academic partners. The consortium had printed and tested fatigue and tensile testing bars under plant-specific conditions. A commonly used cast aluminum alloy, AlSi10Mg, was chosen as test material for the PBF-LB/M process. Differences of the results between the partners and the scatter itself were discussed in detail. T2 - World PM2022 CY - Lyon, France DA - 09.10.2022 KW - Additive manufacturing KW - AlSi10Mg KW - Laser powder bed fusion KW - Round robin KW - Reproducibility PY - 2022 AN - OPUS4-56303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, M. A1 - Schlingmann, T. A1 - Schmidt, J. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Klöden, B. T1 - A Round Robin Test To Investigate The Printing Quality Of PBF-LB/M Processed AlSi10Mg N2 - When it comes to higher accuracies, new technologies and real applications in additive manufacturing, there is one topic which cannot be avoided: The material response on the chosen processing parameters and its agreement and correspondence with literature data of the wrought material grade counterpart. In industrial Additive Manufacturing (AM) standards in terms of printing parameters, protection gas atmospheres or powder handling instructions are not obligatory. Therefore, the question must be answered whether the AM process is reproducible and reliable over different printing companies. This was the motivation to realize a round robin test between 8 European printing companies and academic partners. The consortium had printed and tested fatigue and tensile testing bars under plant-specific conditions. A commonly used cast aluminum alloy, AlSi10Mg, was chosen as test material for the PBF-LB/M process. Differences of the results between the partners and the scatter itself were discussed in detail. T2 - World PM2022 CY - Lyon, France DA - 09.10.2022 KW - Additive manufacturing KW - Round robin KW - Reproducibility KW - Laser powder bed fusion KW - AlSi10Mg PY - 2022 SN - 978-1-899072-54-5 SP - 1 EP - 10 PB - European Powder Metallurgy Association (EPMA) AN - OPUS4-56304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diller, Johannes A1 - Siebert, Ludwig A1 - Winkler, Michael A1 - Siebert, Dorina A1 - Blankenhagen, Jakob A1 - Wenzler, David A1 - Radlbeck, Christina A1 - Mensinger, Martin T1 - An integrated approach for detecting and classifying pores and surface topology for fatigue assessment 316L manufactured by powder bed fusion of metals using a laser beam using μ$$ \mu $$CT and machine learning algorithms N2 - AbstractThis research aims to detect and analyze critical internal and surface defects in metal components manufactured by powder bed fusion of metals using a laser beam (PBF‐LB/M). The aim is to assess their impact on the fatigue behavior. Therefore, a combination of methods, including image processing of micro‐computed tomography (CT) scans, fatigue testing, and machine learning, was applied. A workflow was established to contribute to the nondestructive assessment of component quality and mechanical properties. Additionally, this study illustrates the application of machine learning to address a classification problem, specifically the categorization of pores into gas pores and lack of fusion pores. Although it was shown that internal defects exhibited a reduced impact on fatigue behavior compared with surface defects, it was noted that surface defects exert a higher influence on fatigue behavior. A machine learning algorithm was developed to predict the fatigue life using surface defect features as input parameters. KW - Fatigue KW - Machine learning KW - Micro-computed tomography KW - Powder bed fusion of metals using a laser beam KW - Quality assurance PY - 2024 DO - https://doi.org/10.1111/ffe.14375 SN - 8756-758X SP - 1 EP - 16 PB - John Wiley & Sons Ltd. AN - OPUS4-60593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer T1 - Thermographic Investigation of the Anisotropic Behaviour of Additively Manufactured AISI 316 Steel using DED-arc N2 - Additive manufacturing is one of the most promising techniques for industrial production and maintenance, but the specifics of the layered structure must be considered. The Direct Energy Deposition-Arc process enables relatively high deposition rates, which is favourable for larger components. For this study, specimens with different orientations were prepared from one AISI316 steel block – parallel and orthogonal to the deposition plane. Quasistatic tensile loading tests were carried out, monitored by an infrared camera. The obtained surface temperature maps revealed structural differences between both orientations. The consideration of surface temperature transients yields more details about the behaviour of the material under tensile loading than the conventional stress-strain-curve. These preliminary investigations were supplemented by thermographic fatigue trials. Although the anisotropy was also observed during fatigue loading the fatigue behaviour in general was the same, at least for both inspected specimens. The presented results demonstrate the abilities and the potential of thermographic techniques for tensile tests. T2 - 17th Quantitative Infrared Thermography Conference CY - Zagreb, Croatia DA - 01.07.2024 KW - Thermoelastic effect KW - Thermoplastic effect KW - Thermal stress analysis PY - 2024 AN - OPUS4-60574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela T1 - Deformation-Induced Martensitic Transformation in Fused Filament Fabricated Austenitic Stainless Steels During Tension at Wide Range of Temperatures. Part 2: Numerical Simulation N2 - Structural components of superconducting magnets (e.g., collars, bladders, or keys) with complex shapes, operating at cryogenic temperatures (4K, 77K), as well as additional elements of tanks for storing liquid hydrogen (20K), such as hoses and valves, are made of austenitic steel. With conventional manufacturing technologies, complex geometries are difficult to manufacture. In contrast, additive manufacturing offers the possibility of easier production of complex geometries, although the knowledge about the material behavior is not yet comprehensively available. The scientific objective of the project is the experimental identification and numerical simulation of the evolution of the deformation-induced martensitic transformation and the prediction of the material behavior of Fused Filemant Fabricated (FFF) 316L for cryogenic applications. The material behavior of FFF-316L under tensile stress at both room temperature and 77K was characterized. Utilizing experimental data and microstructure analysis through scanning electron microscopy, a comprehensive material model [1] was used. This constitutive model is centered on the deformation-induced martensitic transformation at both ambient and cryogenic temperatures. The linear kinetic law of evolution of deformation-induced phase transformation in ASS is adopted [1]. It posits that the phase transformation is driven by the accumulated plastic strain. The model intricately links the intensity of plastic deformation to the phase transformation, employing a mixed kinematic/isotropic linear plastic hardening approach based on Mori-Tanaka homogenization. A numerical results will be verified experimentaly at room and at 77K. T2 - 43rd Solid Mechanics Conference CY - Wroclaw, Poland DA - 16.09.2024 KW - Phase transformation KW - Deformation-induced martensitic transformation KW - 316L KW - Fused Deposition Modelling PY - 2024 AN - OPUS4-61181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -