TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. A1 - Madia, Mauro T1 - Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy N2 - The microstructure has a great influence on short fatigue crack growth in metallic materials. Laser-based Powder Bed Fusion AlSi10Mg alloys exhibit in the as-built condition a fine fibrous Si structure and a supersaturated solid solution of Si in the α-Al matrix, which is significantly modified by heat treatments starting already at temperatures under 260 °C. This study focuses on the influence of post-process heat treatments on the microstructural evolution and the resulting fatigue crack growth resistance. As compared to the as-built condition, two heat treatments at 265 °C/1 h and at 300 °C/2 h are found to be beneficial to the fatigue crack growth resistance of the investigated material. KW - Additive manufacturing KW - Fatigue crack growth KW - Cyclic R-curve KW - Heat treatment PY - 2023 DO - https://doi.org/10.1016/j.ijfatigue.2023.107808 SN - 0142-1123 VL - 175 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using ultrasonic‑assisted milling for wire‑arc additive manufactured Ni alloy components N2 - Nickel alloys are cost intensive materials and generally classified as difficult-to-cut material. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. In this investigation, machining experiments were carried out on wire arc additive manufactured components made of alloy 36, varying the cutting speed and the feed rate. In addition, the conventional milling process (CM) was compared with a modern, hybrid machining process, the ultrasonic-assisted milling (US). The cutting forces and the surface-near residual stresses were analysed using X-ray diffraction. A significant improvement of the machinability as well as the surface integrity by using the ultrasonic assistance was observed, especially at low cutting speeds. The CM induced mainly tensile residual stresses, the US mainly compressive residual stresses. KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575246 DO - https://doi.org/10.1007/s00170-023-11326-z SN - 1433-3015 VL - 126 IS - 9 SP - 4191 EP - 4198 PB - Springer Nature AN - OPUS4-57524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, Ronny A1 - Hälsig, André A1 - Hensel, Jonas T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting 2023 CII and CIX CY - Munich, Germany DA - 06.03.2023 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Microstructure KW - Cold cracking safety KW - Wind energy PY - 2023 AN - OPUS4-59261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual stresses Analysis in Additively Manufactured alloys using neutron diffraction (L-PBF) N2 - An overview of recent progress at BAM of residual stress analysis in additively manufactured, in particular Laser Powder Bed Fusion of metallics materials, using neutron diffraction will be presented. This will cover important topics of the stress-free reference, the diffraction elastic moduli and principal stress determination. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Berlin, Germany DA - 28.03.2023 KW - AGIL KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2023 AN - OPUS4-59177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593515 DO - https://doi.org/10.3390/met14010082 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-II/CIX CY - Munich, Germany DA - 06.03.2023 KW - Additive manufacturing KW - High strength steel KW - Residual stress PY - 2023 AN - OPUS4-59307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf- Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-XIII CY - Online meeting DA - 20.04.2023 KW - Additive Manufacturing KW - High strength steel KW - Residual Stress PY - 2023 AN - OPUS4-59308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - 76th IIW Annual Assembly and International Conference on Welding and Joining CY - Singapore DA - 16.07.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511769 DO - https://doi.org/10.1038/s41598-020-71112-9 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578331 DO - https://doi.org/10.1107/S1600576723004855 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Consideration of manufacturing-related stresses and cold crack avoidance in high-strength steels WAAM components N2 - High-strength steels offer great potential in weight-optimised modern steel structures. Additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM), enable near-net-shape manufacturing of complex structures and more efficient manufacturing, offering significant savings in costs, time, and resources. Suitable filler materials for WAAM are already commercially available. However, the lack of knowledge or technical guidelines regarding welding residual stresses during manufacturing and operation in connection with cold cracking risk limit their industrial application significantly. In a project of BAM and TU Chemnitz, the influences and complex interactions of material, manufacturing process, design and processing steps on residual stress evolution are investigated. By developing process recommendations and a special cold cracking test, economic manufacturing, and stress-appropriate design of high-strength steel WAAM components are main objectives. The present study focuses on determining the influence of heat control (interpass temperature, heat input, cooling time) and the design aspects of the components on the hardness and residual stresses, which are analysed by X-ray diffraction. Defined reference specimens, i.e., hollow cuboids, are automatically welded with a special WAAM solid wire. The influences of wall length, wall thickness and wall height on the residual stresses are analysed. Geometric properties can be selectively adjusted by wire feed and welding speed but cannot be varied arbitrarily. This was addressed by adapted build-up strategies. The results indicate a significant influence of the heat control and the wall height on the residual stresses. The interpass temperature, wall thickness and wall length are not significant. These analyses allow recommendations for standards and manufacturing guidelines, enabling a safe and economic manufacturing of high-strength steel components. T2 - European Steel Technology and Application Days CY - Düsseldorf, Germany DA - 14.06.2023 KW - DED-arc KW - Additive manufacturing KW - Heat control KW - High-strength filler metals KW - Residual stress PY - 2023 AN - OPUS4-57691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. KW - DED-arc KW - Additive manufacturing KW - High-strength steel filler metal KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572698 DO - https://doi.org/10.1007/s40194-023-01503-9 SN - 1878-6669 VL - 67 IS - 4 SP - 987 EP - 996 PB - Springer CY - Berlin AN - OPUS4-57269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Bergant, M. A1 - Evans, Alex A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Yawny, A. T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Manufacturing a safer world: Diffraction based residual stress analysis for metal additive manufacturing N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, with associated potential gains in performance and efficiency. However, high magnitude residual stresses (RS) are often a product of the rapid thermal cycles typical of the layerwise process. Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterisation of these RS is essential for safety related engineering application and supports the development of reliable numerical models. Diffraction-based methods for RS analysis using neutrons and high energy X-rays enable non-destructive spatially resolved characterisation of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys as a function of process parameters. In addition, the challenges posed by the textured and hierarchical microstructures of LPBF materials on diffraction-based RS analysis in AM materials will be discussed. This will include the question of the d0 reference lattice spacing and the appropriate choice of the diffraction elastic constants (DECs) to calculate the level of RS in LPBF manufactured alloys. T2 - 11th INternational Conference on Residual Stress (ICRS11) CY - Online meeting DA - 28.03.2021 KW - Residual stress analysis KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2022 AN - OPUS4-54676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2021 AN - OPUS4-53792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Mohr, Gunther A1 - Blasón Gonzalez, Sergio A1 - Hilgenberg, Kai T1 - Design of representative specimens for the characterization of the fatigue properties of metallic components fabricated by PBF-LB/M N2 - The process-structure-property-performance relationship is a fundamental paradigm in metal additive manufacturing (AM). The knowledge of how process parameters and post-process treatments influence the material properties and therefore the structural integrity of additively manufactured metallic components is of paramount importance. With respect to this, one of the unsolved problems related to the unique AM process is the reliability of witness samples for part qualification. Focusing on the Laser Powder Bed Fusion (PBF-LB/M) process, the microstructure and therefore the mechanical performance of test coupons are not representative of parts of the same material in every case. This work summarizes part of the results of an ongoing cooperation between BAM and BASF, which aims at addressing this issue by designing dedicated specimens, representative of the fatigue properties of the real component. The considered case study consisted in the fabrication and characterization of the fatigue properties of a pressure vessel made of AISI 316L. The first phase of the project was devoted to the process monitoring to understand the relationship between process parameters and temperature distribution during the fabrication of the component. Finite element models were tuned on the experimental data from the process monitoring and simulations of the temperature field in the component were conducted. The numerical results were in good agreement with the temperature profiles measured during the fabrication of the component. The second phase dealt with the evaluation of the fatigue and fatigue crack propagation properties on specimens extracted from different regions of the pressure vessel. The experimental investigations showed significant differences in hoop and longitudinal direction. A clear dependence of the fatigue properties on heat accumulation (temperature distribution) and defect size was pointed out. The third phase encompassed the fabrication and testing of the representative specimens. Numerical simulations were used to design specimens displaying the same temperature profile as in the most critical region of the component. The fatigue testing of the representative specimens is subject of ongoing work. T2 - 8. DVM-Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 28.11.2023 KW - PBF-LB/M KW - Process Monitoring KW - Process Simulation KW - Fatigue KW - Representative Specimens PY - 2023 AN - OPUS4-58973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Ávila, Luis A1 - Werner, Tiago A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Charmi, Amir A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Falkenberg, Rainer A1 - Bettge, Dirk A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Kromm, Arne A1 - Hilgenberg, Kai A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Ageing behaviour of laser powder bed fused 316L: a powder to failure approach N2 - Laser powder bed fusion (LPBF) is an additive manufacturing process for materials which inherently tends to yield various degrees of metastable hierarchical microstructures, defects and high residual stresses in the as-built condition depending on the process parameters. The understanding of the evolution of these typical features during heat treatment and subsequent thermal and mechanical ageing is crucial for the wider acceptance for safety critical structures. A multi-disciplinary research project at BAM studying the development of the microstructure, defects, residual stresses typical of LPBF 316L and their evolution during thermal and mechanical ageing has led to insights into the stability of these inherent features. This presentation aims to give a broad overview of the project with a few specific cases of investigation. Firstly, the formation of residual stresses, the nature of the initial microstructure, the tensile properties and a modelling approach to understand the anisotropy will be presented. This will be followed by examples of studies of their evolution during heat treatment, long term thermal exposure, and room temperature and high temperature mechanical testing compared to a baseline of conventional wrought variant of the same alloy. T2 - International Conference on Additive Manufacturing 2021 (ICAM 2021) CY - Online meeting DA - 01.11.2021 KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2021 AN - OPUS4-54106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - LPBF KW - AISI 316L KW - Online Process Monitoring KW - Thermography KW - Residual Stress KW - Neutron Diffraction KW - X-ray Diffraction KW - Computed Tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512903 DO - https://doi.org/10.3390/met10091234 VL - 10 IS - 9 PB - MDPI CY - Basel AN - OPUS4-51290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -